Blog
/
Network
/
October 13, 2023

Protecting Brazilian Organizations from Malware

Discover how Darktrace DETECT thwarted a banking trojan targeting Brazilian organizations, preventing data theft and informing the customer.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Roberto Romeu
Senior SOC Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
13
Oct 2023

Nationally Targeted Cyber Attacks

As the digital world becomes more and more interconnected, the threat of cyber-attacks transcends borders and presents a significant concern to security teams worldwide. Yet despite this, some malicious actors have shown a tendency to focus their attacks on specific countries. By employing highly tailored tactics, techniques, and procedures (TTPs) to target users and organizations from one nation, rather than launching more widespread campaigns, threat actors are able to maximize the efficiency and efficacy of their attacks.

What is Guildma and how does it work?

One example can be seen in the remote access trojan (RAT) and information stealer, Guildma. Guildma, also known by the demonic moniker, Astaroth, first appeared in the wild in 2017 and is a Latin America-based banking trojan known to primarily target organizations in Brazil, although has more recently been observed in North America and Europe too [1].

By concentrating their efforts on Brazil, Guildma is able to launch attacks with a high degree of specificity, focussing their language on Brazilian norms, referencing Brazilian institutions, and tailoring their social engineering accordingly. Moreover, considering that Brazilian customers likely represent a relatively small portion of security vendors’ clientele, there may be a limited pool of available indicators of compromise (IoCs). This limitation could significantly impact the efficacy of traditional security measures that rely on signature-based detection methods in identifying emerging threats.

Darktrace vs. Guildma

In June 2023, Darktrace observed a Guildma compromise on the network of a Brazilian customer in the manufacturing sector. The anomaly-based detection capabilities of Darktrace DETECT™ allowed it to identify suspicious activity surrounding the compromise, agnostic of any IoCs or specific signatures of a threat actor. Following the successful detection of the malware, the Darktrace Security Operations Center (SOC) carried out a thorough investigation into the compromise and brought it to the attention of the customer’s security team, allowing them to quickly react and prevent any further escalation.

This early detection by Darktrace effectively shut down Guildma operations on the network before any sensitive data could be gathered and stolen by malicious actors.

Attack Overview

In the case of the Guildma RAT detected by Darktrace, the affected system was a desktop device, ostensibly used by one employee. The desktop was first observed on the customer’s network in April 2023; however, it is possible that the initial compromise took place before Darktrace had visibility over the network. Guildma compromises typically start with phishing campaigns, indicating that the initial intrusion in this case likely occurred beyond the scope of Darktrace’s monitoring [2].

Early indicators

On June 23, 2023, Darktrace DETECT observed the first instance of unusual activity being performed by the affected desktop device, namely regular HTTP POST requests to a suspicious domain, indicative of command-and-control (C2) beaconing activity. The domain used an unusual Top-Level Domain (TLD), with a plausibly meaningful (in Portuguese) second-level domain and a seemingly random 11-character third-level domain, “dn00x1o0f0h.puxaofolesanfoneiro[.]quest”.

Throughout the course of this attack, Darktrace observed additional connections like this, representing something of a signature of the attack. The suspicious domains were typically registered within six months of observation, featured an uncommon TLD, and included a seemingly randomized third-level domain of 6-11 characters, followed by a plausibly legitimate second-level domain with a minimum of 15 characters. The connections to these unusual endpoints all followed a similar two-hour beaconing period, suggesting that Guildma may rotate its C2 infrastructure, using the Multi-Stage Channels TTP (MITRE ID T1104) to evade restrictions by firewalls or other signature-based security tools that rely on static lists of IoCs and “known bads”.

Figure 1: Model Breach Event Log for the “Compromise / Agent Beacon (Long Period)”. The connections at two-hour intervals, including at unreasonably late hours, is consistent with beaconing for C2.

Living-off-the-land with BITS abuse

A week later, on June 30, 2023, the affected device was observed making an unusual Microsoft BITS connection. BitsAdmin is a deprecated administrative tool available on most Windows devices and can be leveraged by attackers to transfer malicious obfuscated payloads into and around an organization’s network. The domain observed during this connection, "cwiufv.pratkabelhaemelentmarta[.]shop”, follows the previously outlined domain naming convention. Multiple open-source intelligence (OSINT) sources indicated that the endpoint had links to malware and, when visited, redirected users to the Brazilian versions of WhatsApp and Zoom. This is likely a tactic employed by threat actors to ensure users are unaware of suspicious domains, and subsequent malware downloads, by redirected them to a trusted source.

Figure 2: A screenshot of the Model Breach log summary of the “Unusual BITS Activity” model breach. The breach log contains key details such as the ASN, hostname, and user agent used in the breaching connection.

Obfuscated Tooling Downloads

Within one minute of the suspicious BITS activity, Darktrace detected the device downloading a suspicious file from the aforementioned endpoint, (cwiufv.pratkabelhaemelentmarta[.]shop). The file in question appeared to be a ZIP file with the 17-digit numeric name query, namely “?37627343830628786”, with the filename “zodzXLWwaV.zip”.

However, Darktrace DETECT recognized that the file extension did not match its true file type and identified that it was, in fact, an executable (.exe) file masquerading as a ZIP file. By masquerading files downloads, threat actors are able to make their malicious files seem legitimate and benign to security teams and traditional security tools, thereby evading detection. In this case, the suspicious file in question was indeed identified as malicious by multiple OSINT sources.

Following the initial download of this masqueraded file, Darktrace also detected subsequent downloads of additional executable files from the same endpoint.  It is possible that these downloads represented Guildma actors attempting to download additional tooling, including the information-stealer widely known as Astaroth, in order to begin its data collection and exfiltration operations.

Figure 3: A screenshot of a graph produced by the Threat Visualizer of the affected device's external connections. The visual aid marks breaches with red and orange dots, creating a more intuitive explanation of observed behavior.

Darktrace SOC

The successful detection of the masqueraded file transfer triggered an Enhanced Monitoring model breach, a high-fidelity model designed to detect activity that is more likely indicative of an ongoing compromise.  

This breach was immediately escalated to the Darktrace SOC for analysis by Darktrace’s team of expert analysts who were able to complete a thorough investigation and notify the customer’s security team of the compromise in just over half an hour. The investigation carried out by Darktrace’s analysts confirmed that the activity was, indeed, malicious, and provided the customer’s security team with details around the extent of the compromise, the specific IoCs, and risks this compromise posed to their digital environment. This information empowered the customer’s security team to promptly address the issue, having a significant portion of the investigative burden reduced and resolved by the round-the-clock Darktrace analyst team.

In addition to this, Cyber AI Analyst™ launched an investigation into the ongoing compromise and was able to connect the anomalous HTTP connections to the subsequent suspicious file downloads, viewing them as one incident rather than two isolated events. AI Analyst completed its investigation in just three minutes, upon which it provided a detailed summary of events of the activity, further aiding the customer’s remediation process.

Figure 4: CyberAI Analyst summary of the suspicious activity. A prose summary of the breach activity and the meaning of the technical details is included to maintain an easily digestible stream of information.

Conclusion

While the combination of TTPs observed in this Guildma RAT compromise is not uncommon globally, the specificity to targeting organizations in Brazil allows it to be incredibly effective. By focussing on just one country, malicious actors are able to launch highly specialized attacks, adapting the language used and tailoring the social engineering effectively to achieve maximum success. Moreover, as Brazil likely represents a smaller segment of security vendors’ customers, therefore leading to a limited pool of IoCs, attackers are often able to evade traditional signature-based detections.

Darktrace DETECT’s anomaly-based approach to threat detection allows for effective detection, mitigation, and response to emerging threats, regardless of the specifics of the attack and without relying on threat intelligence or previous IoCs. Ultimately in this case, Darktrace was able to identify the suspicious activity surrounding the Guildma compromise and swiftly bring it to the attention of the customer’s security team, before any data gathering, or exfiltration activity took place.

Darktrace’s threat detection capabilities coupled with its expert analyst team and round-the-clock SOC response is a highly effective addition to an organization’s defense-in-depth, whether in Brazil or anywhere else around the world.

Credit to Roberto Romeu, Senior SOC Analyst, Taylor Breland, Analyst Team Lead, San Francisco

References

https://malpedia.caad.fkie.fraunhofer.de/details/win.astaroth

https://www.welivesecurity.com/2020/03/05/guildma-devil-drives-electric/  

Appendices

Darktrace DETECT Model Breaches

  • Compromise / Agent Beacon (Long Period)
  • Device / Unusual BITS Activity
  • Anomalous File / Anomalous Octet Stream (No User Agent)
  • Anomalous File / Masqueraded File Transfer (Enhanced Monitoring Model)
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Multiple EXE from Rare External Locations

List of IoCs

IoC Type - Description + Confidence

5q710e1srxk.broilhasoruikaliventiladorrta[.]shop - Domain - Likely C2 server

m2pkdlse8md.roilhasohlcortinartai[.]hair - Domain - Likely C2 server

cwiufv.pratkabelhaemelentmarta[.]shop - Domain - C2 server

482w5pct234.jaroilcasacorkalilc[.]ru[.]com - Domain - C2 server

dn00x1o0f0h.puxaofolesanfoneiro[.]quest - Domain - Likely C2 server

10v7mybga55.futurefrontier[.]cyou - Domain - Likely C2 server

f788gbgdclp.growthgenerator[.]cyou - Domain - Likely C2 server

6nieek.satqabelhaeiloumelsmarta[.]shop - Domain - Likely C2 server

zodzXLWwaV.zip (SHA1 Hash: 2a4062e10a5de813f5688221dbeb3f3ff33eb417 ) - File hash - Malware

IZJQCAOXQb.zip (SHA1 Hash: eaec1754a69c50eac99e774b07ef156a1ca6de06 ) - File hash - Likely malware

MITRE ATT&CK Mapping

ATT&CK Technique - Technique ID

Multi-Stage Channels - T1104

BITS Jobs - T1197

Application Layer Protocol: Web Protocols - T1071.001

Acquire Infrastructure: Web Services - T1583.006

Obtain Capabilities: Malware - T1588.001

Masquerading - T1036

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Roberto Romeu
Senior SOC Analyst

More in this series

No items found.

Blog

/

OT

/

May 20, 2025

Adapting to new USCG cybersecurity mandates: Darktrace for ports and maritime systems

Cargo ships at a portDefault blog imageDefault blog image

What is the Marine Transportation System (MTS)?

Marine Transportation Systems (MTS) play a substantial roll in U.S. commerce, military readiness, and economic security. Defined as a critical national infrastructure, the MTS encompasses all aspects of maritime transportation from ships and ports to the inland waterways and the rail and roadways that connect them.

MTS interconnected systems include:

  • Waterways: Coastal and inland rivers, shipping channels, and harbors
  • Ports: Terminals, piers, and facilities where cargo and passengers are transferred
  • Vessels: Commercial ships, barges, ferries, and support craft
  • Intermodal Connections: Railroads, highways, and logistics hubs that tie maritime transport into national and global supply chains

The Coast Guard plays a central role in ensuring the safety, security, and efficiency of the MTS, handling over $5.4 trillion in annual economic activity. As digital systems increasingly support operations across the MTS, from crane control to cargo tracking, cybersecurity has become essential to protecting this lifeline of U.S. trade and infrastructure.

Maritime Transportation Systems also enable international trade, making them prime targets for cyber threats from ransomware gangs to nation-state actors.

To defend against growing threats, the United States Coast Guard (USCG) has moved from encouraging cybersecurity best practices to enforcing them, culminating in a new mandate that goes into effect on July 16, 2025. These regulations aim to secure the digital backbone of the maritime industry.

Why maritime ports are at risk

Modern ports are a blend of legacy and modern OT, IoT, and IT digitally connected technologies that enable crane operations, container tracking, terminal storage, logistics, and remote maintenance.

Many of these systems were never designed with cybersecurity in mind, making them vulnerable to lateral movement and disruptive ransomware attack spillover.

The convergence of business IT networks and operational infrastructure further expands the attack surface, especially with the rise of cloud adoption and unmanaged IoT and IIoT devices.

Cyber incidents in recent years have demonstrated how ransomware or malicious activity can halt crane operations, disrupt logistics, and compromise safety at scale threatening not only port operations, but national security and economic stability.

Relevant cyber-attacks on maritime ports

Maersk & Port of Los Angeles (2017 – NotPetya):
A ransomware attack crippled A.P. Moller-Maersk, the world’s largest shipping company. Operations at 17 ports, including the Port of Los Angeles, were halted due to system outages, causing weeks of logistical chaos.

Port of San Diego (2018 – Ransomware Attack):
A ransomware attack targeted the Port of San Diego, disrupting internal IT systems including public records, business services, and dockside cargo operations. While marine traffic was unaffected, commercial activity slowed significantly during recovery.

Port of Houston (2021 – Nation-State Intrusion):
A suspected nation-state actor exploited a known vulnerability in a Port of Houston web application to gain access to its network. While the attack was reportedly thwarted, it triggered a federal investigation and highlighted the vulnerability of maritime systems.

Jawaharlal Nehru Port Trust, India (2022 – Ransomware Incident):
India’s largest container port experienced disruptions due to a ransomware attack affecting operations and logistics systems. Container handling and cargo movement slowed as IT systems were taken offline during recovery efforts.

A regulatory shift: From guidance to enforcement

Since the Maritime Transportation Security Act (MTSA) of 2002, ports have been required to develop and maintain security plans. Cybersecurity formally entered the regulatory fold in 2020 with revisions to 33 CFR Part 105 and 106, requiring port authorities to assess and address computer system vulnerabilities.

In January 2025, the USCG finalized new rules to enforce cybersecurity practices across the MTS. Key elements include (but are not limited to):

  • A dedicated cyber incident response plan (PR.IP-9)
  • Routine cybersecurity risk assessments and exercises (ID.RA)
  • Designation of a cybersecurity officer and regular workforce training (section 3.1)
  • Controls for access management, segmentation, logging, and encryption (PR.AC-1:7)
  • Supply chain risk management (ID.SC)
  • Incident reporting to the National Response Center

Port operators are encouraged to align their programs with the NIST Cybersecurity Framework (CSF 2.0) and NIST SP 800-82r3, which provide comprehensive guidance for IT and OT security in industrial environments.

How Darktrace can support maritime & ports

Unified IT + OT + Cloud coverage

Maritime ports operate in hybrid environments spanning business IT systems (finance, HR, ERP), industrial OT (cranes, gates, pumps, sensors), and an increasing array of cloud and SaaS platforms.

Darktrace is the only vendor that provides native visibility and threat detection across OT/IoT, IT, cloud, and SaaS environments — all in a single platform. This means:

  • Cranes and other physical process control networks are monitored in the same dashboard as Active Directory and Office 365.
  • Threats that start in the cloud (e.g., phishing, SaaS token theft) and pivot or attempt to pivot into OT are caught early — eliminating blind spots that siloed tools miss.

This unification is critical to meeting USCG requirements for network-wide monitoring, risk identification, and incident response.

AI that understands your environment. Not just known threats

Darktrace’s AI doesn’t rely on rules or signatures. Instead, it uses Self-Learning AI TM that builds a unique “pattern of life” for every device, protocol, user, and network segment, whether it’s a crane router or PLC, SCADA server, Workstation, or Linux file server.

  • No predefined baselines or manual training
  • Real-time anomaly detection for zero-days, ransomware, and supply chain compromise
  • Continuous adaptation to new devices, configurations, and operations

This approach is critical in diverse distributed OT environments where change and anomalous activity on the network are more frequent. It also dramatically reduces the time and expertise needed to classify and inventory assets, even for unknown or custom-built systems.

Supporting incident response requirements

A key USCG requirement is that cybersecurity plans must support effective incident response.

Key expectations include:

  • Defined response roles and procedures: Personnel must know what to do and when (RS.CO-1).
  • Timely reporting: Incidents must be reported and categorized according to established criteria (RS.CO-2, RS.AN-4).
  • Effective communication: Information must be shared internally and externally, including voluntary collaboration with law enforcement and industry peers (RS.CO-3 through RS.CO-5).
  • Thorough analysis: Alerts must be investigated, impacts understood, and forensic evidence gathered to support decision-making and recovery (RS.AN-1 through RS.AN-5).
  • Swift mitigation: Incidents must be contained and resolved efficiently, with newly discovered vulnerabilities addressed or documented (RS.MI-1 through RS.MI-3).
  • Ongoing improvement: Organizations must refine their response plans using lessons learned from past incidents (RS.IM-1 and RS.IM-2).

That means detections need to be clear, accurate, and actionable.

Darktrace cuts through the noise using AI that prioritizes only high-confidence incidents and provides natural-language narratives and investigative reports that explain:

  • What’s happening, where it’s happening, when it’s happening
  • Why it’s unusual
  • How to respond

Result: Port security teams often lean and multi-tasked can meet USCG response-time expectations and reporting needs without needing to scale headcount or triage hundreds of alerts.

Built-for-edge deployment

Maritime environments are constrained. Many traditional SaaS deployment types often are unsuitable for tugboats, cranes, or air-gapped terminal systems.

Darktrace builds and maintains its own ruggedized, purpose-built appliances and unique virtual deployment options that:

  • Deploy directly into crane networks or terminal enclosures
  • Require no configuration or tuning, drop-in ready
  • Support secure over-the-air updates and fleet management
  • Operate without cloud dependency, supporting isolated and air-gapped systems

Use case: Multiple ports have been able to deploy Darktrace directly into the crane’s switch enclosure, securing lateral movement paths without interfering with the crane control software itself.

Segmentation enforcement & real-time threat containment

Darktrace visualizes real-time connectivity and attack pathways across IT, OT, and IoT it and integrates with firewalls (e.g., Fortinet, Cisco, Palo Alto) to enforce segmentation using AI insights alongside Darktrace’s own native autonomous and human confirmed response capabilities.

Benefits of autonomous and human confirmed response:

  • Auto-isolate rogue devices before the threat can escalate
  • Quarantine a suspicious connectivity with confidence operations won’t be halted
  • Autonomously buy time for human responders during off-hours or holidays
  • This ensures segmentation isn't just documented but that in the case of its failure or exploitation responses are performed as a compensating control

No reliance on 3rd parties or external connectivity

Darktrace’s supply chain integrity is a core part of its value to critical infrastructure customers. Unlike solutions that rely on indirect data collection or third-party appliances, Darktrace:

  • Uses in-house engineered sensors and appliances
  • Does not require transmission of data to or from the cloud

This ensures confidence in both your cyber visibility and the security of the tools you deploy.

See examples here of how Darktrace stopped supply chain attacks:

Readiness for USCG and Beyond

With a self-learning system that adapts to each unique port environment, Darktrace helps maritime operators not just comply but build lasting cyber resilience in a high-threat landscape.

Cybersecurity is no longer optional for U.S. ports its operationally and nationally critical. Darktrace delivers the intelligence, automation, and precision needed to meet USCG requirements and protect the digital lifeblood of the modern port.

Continue reading
About the author
Daniel Simonds
Director of Operational Technology

Blog

/

Network

/

May 20, 2025

Catching a RAT: How Darktrace Neutralized AsyncRAT

woman working on laptopDefault blog imageDefault blog image

What is a RAT?

As the proliferation of new and more advanced cyber threats continues, the Remote Access Trojan (RAT) remains a classic tool in a threat actor's arsenal. RATs, whether standardized or custom-built, enable attackers to remotely control compromised devices, facilitating a range of malicious activities.

What is AsyncRAT?

Since its first appearance in 2019, AsyncRAT has become increasingly popular among a wide range of threat actors, including cybercriminals and advanced persistent threat (APT) groups.

Originally available on GitHub as a legitimate tool, its open-source nature has led to widespread exploitation. AsyncRAT has been used in numerous campaigns, including prolonged attacks on essential US infrastructure, and has even reportedly penetrated the Chinese cybercriminal underground market [1] [2].

How does AsyncRAT work?

Original source code analysis of AsyncRAT demonstrates that once installed, it establishes persistence via techniques such as creating scheduled tasks or registry keys and uses SeDebugPrivilege to gain elevated privileges [3].

Its key features include:

  • Keylogging
  • File search
  • Remote audio and camera access
  • Exfiltration techniques
  • Staging for final payload delivery

These are generally typical functions found in traditional RATs. However, it also boasts interesting anti-detection capabilities. Due to the popularity of Virtual Machines (VM) and sandboxes for dynamic analysis, this RAT checks for the manufacturer via the WMI query 'Select * from Win32_ComputerSystem' and looks for strings containing 'VMware' and 'VirtualBox' [4].

Darktrace’s coverage of AsyncRAT

In late 2024 and early 2025, Darktrace observed a spike in AsyncRAT activity across various customer environments. Multiple indicators of post-compromise were detected, including devices attempting or successfully connecting to endpoints associated with AsyncRAT.

On several occasions, Darktrace identified a clear association with AsyncRAT through the digital certificates of the highlighted SSL endpoints. Darktrace’s Real-time Detection effectively identified and alerted on suspicious activities related to AsyncRAT. In one notable incident, Darktrace’s Autonomous Response promptly took action to contain the emerging threat posed by AsyncRAT.

AsyncRAT attack overview

On December 20, 2024, Darktrace first identified the use of AsyncRAT, noting a device successfully establishing SSL connections to the uncommon external IP 185.49.126[.]50 (AS199654 Oxide Group Limited) via port 6606. The IP address appears to be associated with AsyncRAT as flagged by open-source intelligence (OSINT) sources [5]. This activity triggered the device to alert the ‘Anomalous Connection / Rare External SSL Self-Signed' model.

Model alert in Darktrace / NETWORK showing the repeated SSL connections to a rare external Self-Signed endpoint, 185.49.126[.]50.
Figure 1: Model alert in Darktrace / NETWORK showing the repeated SSL connections to a rare external Self-Signed endpoint, 185.49.126[.]50.

Following these initial connections, the device was observed making a significantly higher number of connections to the same endpoint 185.49.126[.]50 via port 6606 over an extended period. This pattern suggested beaconing activity and triggered the 'Compromise/Beaconing Activity to External Rare' model alert.

Further analysis of the original source code, available publicly, outlines the default ports used by AsyncRAT clients for command-and-control (C2) communications [6]. It reveals that port 6606 is the default port for creating a new AsyncRAT client. Darktrace identified both the Certificate Issuer and the Certificate Subject as "CN=AsyncRAT Server". This SSL certificate encrypts the packets between the compromised system and the server. These indicators of compromise (IoCs) detected by Darktrace further suggest that the device was successfully connecting to a server associated with AsyncRAT.

Model alert in Darktrace / NETWORK displaying the Digital Certificate attributes, IP address and port number associated with AsyncRAT.
Figure 2: Model alert in Darktrace / NETWORK displaying the Digital Certificate attributes, IP address and port number associated with AsyncRAT.
Darktrace’s detection of repeated connections to the suspicious IP address 185.49.126[.]50 over port 6606, indicative of beaconing behavior.
Figure 3: Darktrace’s detection of repeated connections to the suspicious IP address 185.49.126[.]50 over port 6606, indicative of beaconing behavior.
Darktrace's Autonomous Response actions blocking the suspicious IP address,185.49.126[.]50.
Figure 4: Darktrace's Autonomous Response actions blocking the suspicious IP address,185.49.126[.]50.

A few days later, the same device was detected making numerous connections to a different IP address, 195.26.255[.]81 (AS40021 NL-811-40021), via various ports including 2106, 6606, 7707, and 8808. Notably, ports 7707 and 8808 are also default ports specified in the original AsyncRAT source code [6].

Darktrace’s detection of connections to the suspicious endpoint 195.26.255[.]81, where the default ports (6606, 7707, and 8808) for AsyncRAT were observed.
Figure 5: Darktrace’s detection of connections to the suspicious endpoint 195.26.255[.]81, where the default ports (6606, 7707, and 8808) for AsyncRAT were observed.

Similar to the activity observed with the first endpoint, 185.49.126[.]50, the Certificate Issuer for the connections to 195.26.255[.]81 was identified as "CN=AsyncRAT Server". Further OSINT investigation confirmed associations between the IP address 195.26.255[.]81 and AsyncRAT [7].

Darktrace's detection of a connection to the suspicious IP address 195.26.255[.]81 and the domain name identified under the common name (CN) of a certificate as AsyncRAT Server
Figure 6: Darktrace's detection of a connection to the suspicious IP address 195.26.255[.]81 and the domain name identified under the common name (CN) of a certificate as AsyncRAT Server.

Once again, Darktrace's Autonomous Response acted swiftly, blocking the connections to 195.26.255[.]81 throughout the observed AsyncRAT activity.

Figure 7: Darktrace's Autonomous Response actions were applied against the suspicious IP address 195.26.255[.]81.

A day later, Darktrace again alerted to further suspicious activity from the device. This time, connections to the suspicious endpoint 'kashuub[.]com' and IP address 191.96.207[.]246 via port 8041 were observed. Further analysis of port 8041 suggests it is commonly associated with ScreenConnect or Xcorpeon ASIC Carrier Ethernet Transport [8]. ScreenConnect has been observed in recent campaign’s where AsyncRAT has been utilized [9]. Additionally, one of the ASN’s observed, namely ‘ASN Oxide Group Limited’, was seen in both connections to kashuub[.]com and 185.49.126[.]50.

This could suggest a parallel between the two endpoints, indicating they might be hosting AsyncRAT C2 servers, as inferred from our previous analysis of the endpoint 185.49.126[.]50 and its association with AsyncRAT [5]. OSINT reporting suggests that the “kashuub[.]com” endpoint may be associated with ScreenConnect scam domains, further supporting the assumption that the endpoint could be a C2 server.

Darktrace’s Autonomous Response technology was once again able to support the customer here, blocking connections to “kashuub[.]com”. Ultimately, this intervention halted the compromise and prevented the attack from escalating or any sensitive data from being exfiltrated from the customer’s network into the hands of the threat actors.

Darktrace’s Autonomous Response applied a total of nine actions against the IP address 191.96.207[.]246 and the domain 'kashuub[.]com', successfully blocking the connections.
Figure 8: Darktrace’s Autonomous Response applied a total of nine actions against the IP address 191.96.207[.]246 and the domain 'kashuub[.]com', successfully blocking the connections.

Due to the popularity of this RAT, it is difficult to determine the motive behind the attack; however, from existing knowledge of what the RAT does, we can assume accessing and exfiltrating sensitive customer data may have been a factor.

Conclusion

While some cybercriminals seek stability and simplicity, openly available RATs like AsyncRAT provide the infrastructure and open the door for even the most amateur threat actors to compromise sensitive networks. As the cyber landscape continually shifts, RATs are now being used in all types of attacks.

Darktrace’s suite of AI-driven tools provides organizations with the infrastructure to achieve complete visibility and control over emerging threats within their network environment. Although AsyncRAT’s lack of concealment allowed Darktrace to quickly detect the developing threat and alert on unusual behaviors, it was ultimately Darktrace Autonomous Response's consistent blocking of suspicious connections that prevented a more disruptive attack.

Credit to Isabel Evans (Cyber Analyst), Priya Thapa (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

  • Real-time Detection Models
       
    • Compromise / Suspicious SSL Activity
    •  
    • Compromise / Beaconing Activity To      External Rare
    •  
    • Compromise / High Volume of      Connections with Beacon Score
    •  
    • Anomalous Connection / Suspicious      Self-Signed SSL
    •  
    • Compromise / Sustained SSL or HTTP      Increase
    •  
    • Compromise / SSL Beaconing to Rare      Destination
    •  
    • Compromise / Suspicious Beaconing      Behaviour
    •  
    • Compromise / Large Number of      Suspicious Failed Connections
  •  
  • Autonomous     Response Models
       
    • Antigena / Network / Significant      Anomaly / Antigena Controlled and Model Alert
    •  
    • Antigena / Network / Significant      Anomaly / Antigena Enhanced Monitoring from Client Block

List of IoCs

·     185.49.126[.]50 - IP – AsyncRAT C2 Endpoint

·     195.26.255[.]81 – IP - AsyncRAT C2 Endpoint

·      191.96.207[.]246 – IP – Likely AsyncRAT C2 Endpoint

·     CN=AsyncRAT Server - SSL certificate - AsyncRATC2 Infrastructure

·      Kashuub[.]com– Hostname – Likely AsyncRAT C2 Endpoint

MITRE ATT&CK Mapping:

Tactic –Technique – Sub-Technique  

 

Execution– T1053 - Scheduled Task/Job: Scheduled Task

DefenceEvasion – T1497 - Virtualization/Sandbox Evasion: System Checks

Discovery– T1057 – Process Discovery

Discovery– T1082 – System Information Discovery

LateralMovement - T1021.001 - Remote Services: Remote Desktop Protocol

Collection/ Credential Access – T1056 – Input Capture: Keylogging

Collection– T1125 – Video Capture

Commandand Control – T1105 - Ingress Tool Transfer

Commandand Control – T1219 - Remote Access Software

Exfiltration– T1041 - Exfiltration Over C2 Channel

 

References

[1]  https://blog.talosintelligence.com/operation-layover-how-we-tracked-attack/

[2] https://intel471.com/blog/china-cybercrime-undergrond-deepmix-tea-horse-road-great-firewall

[3] https://www.attackiq.com/2024/08/01/emulate-asyncrat/

[4] https://www.fortinet.com/blog/threat-research/spear-phishing-campaign-with-new-techniques-aimed-at-aviation-companies

[5] https://www.virustotal.com/gui/ip-address/185.49.126[.]50/community

[6] https://dfir.ch/posts/asyncrat_quasarrat/

[7] https://www.virustotal.com/gui/ip-address/195.26.255[.]81

[8] https://www.speedguide.net/port.php?port=8041

[9] https://www.esentire.com/blog/exploring-the-infection-chain-screenconnects-link-to-asyncrat-deployment

[10] https://scammer.info/t/taking-out-connectwise-sites/153479/518?page=26

Continue reading
About the author
Isabel Evans
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI