ブログ
/
Network
/
March 13, 2024

Simulated vs. Real Malware: What You Need To Know

Learn how Darktrace distinguishes between simulated and real malware. Discover the advanced detection techniques used to protect your network.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Priya Thapa
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
13
Mar 2024

Distinguishing attack simulations from the real thing

In an era marked by the omnipresence of digital technologies and the relentless advancement of cyber threats, organizations face an ongoing battle to safeguard their digital environment. Although red and blue team exercises have long served as cornerstones in evaluating organizational defenses, their reliance on manual processes poses significant constraints [1]. Led by seasoned security professionals, these tests offer invaluable insights into security readiness but can be marred by their resource-intensive and infrequent testing cycles. The gaps between assessments leave organizations open to undetected vulnerabilities, compromising the true state of their security environment. In response to the ever-changing threat landscape, organizations are adopting a proactive stance towards cyber security to fortify their defenses.

At the forefront, these efforts tend to revolve around simulated attacks, a process designed to test an organization's security posture against both known and emerging threats in a safe and controlled environment [2]. These meticulously orchestrated simulations imitate the tactics, techniques, and procedures (TTPs) employed by actual adversaries and provide organizations with invaluable insights into their security resilience and vulnerabilities. By immersing themselves in simulated attack scenarios, security teams can proactively probe for vulnerabilities, adopt a more aggressive defense posture, and stay ahead of evolving cyber threats.

Distinguishing between simulated malware observations and authentic malware activities stands as a critical imperative for organizations bolstering their cyber defenses. While simulated platforms offer controlled scenarios for testing known attack patterns, Darktrace’s Self-Learning AI can detect known and unknown threats, identify zero-day threats, and previously unseen malware variants, including attack simulations. Whereas simulated platforms focus on specific known attack vectors, Darktrace DETECT™ and Darktrace RESPOND™ can identify and contain both known and unknown threats across the entire attack surface, providing unparalleled protection of the cyber estate.

Darktrace’s Coverage of Simulated Attacks

In January 2024, the Darktrace Security Operations Center (SOC) received a high volume of alerts relating to an unspecified malware strain that was affecting multiple customers across the fleet, raising concerns, and prompting the Darktrace Analyst team to swiftly investigate the multitude of incident. Initially, these activities were identified as malicious, exhibiting striking resemblance to the characteristics of Remcos, a sophisticated remote access trojan (RAT) that can be used to fully control and monitor any Windows computer from XP and onwards [3]. However, further investigation revealed that these activities were intricately linked to a simulated malware provider.

This discovery underscores a pivotal insight into Darktrace’s capabilities. To this point, leveraging advanced AI, Darktrace operates with a sophisticated framework that extends beyond conventional threat detection. By analyzing network behavior and anomalies, Darktrace not only discerns between simulated threats, such as those orchestrated by breach and attack simulation platforms and genuine malicious activities but can also autonomously respond to these threats with RESPOND. This showcases Darktrace’s advanced capabilities in effectively mitigating cyber threats.

Attack Simulation Process: Initial Access and Intrusion

Darktrace initially observed devices breaching several DETECT models relating to the hostname “new-tech-savvy[.]com”, an endpoint that was flagged as malicious by multiple open-source intelligence (OSINT) vendors [4].

In addition, multiple HTML Application (HTA) file downloads were observed from the malicious endpoint, “new-tech-savvy[.]com/5[.]hta”. HTA files are often seen as part of the UAC-0050 campaign, known for its cyber-attacks against Ukrainian targets, which tends to leverage the Remcos RAT with advanced evasion techniques [5] [6]. Such files are often critical components of a malware operation, serving as conduits for the deployment of malicious payloads onto a compromised system. Often, within the HTA file resides a VBScript which, upon execution, triggers a PowerShell script. This PowerShell script is designed to facilitate the download of a malicious payload, namely “word_update.exe”, from a remote server. Upon successful execution, “word_update.exe” is launched, invoking cmd.exe and initiating the sharing of malicious data. This process results in the execution of explorer.exe, with the malicious RemcosRAT concealed within the memory of explorer.exe. [7].

As the customers were subscribed to Darktrace’s Proactive Threat Notification (PTN) service, an Enhanced Monitoring model was breached upon detection of the malicious HTA file. Enhanced Monitoring models are high-fidelity DETECT models designed to identify activity likely to be indicative of compromise. These PTN alerts were swiftly investigated by Darktrace’s round the clock SOC team.

Following this successful detection, Darktrace RESPOND took immediate action by autonomously blocking connections to the malicious endpoint, effectively preventing additional download attempts. Similar activity may be seen in the case of a legitimate malware attack; however, in this instance, the hostname associated with the download confirmed the detected malicious activity was the result of an attack simulation.

Figure 1: The Breach Log displays the model breach, “Anomalous File/Incoming HTA File”, where a device was detected downloading the HTA file, “5.hta” from the endpoint, “new-tech-savvy[.]com”.
'
Figure 2: The Model Breach Event Log shows a device making connections to the endpoint, “new-tech-savvy[.]com”. As a result, theRESPOND model, “Antigena/Network/External Threat/Antigena File then New Outbound Block", breached and connections to this malicious endpoint were blocked.
Figure 3: The Breach Log further showcases another RESPOND model, “Antigena/Network/External Threat/Antigena Suspicious File Block", which was triggered when the device downloaded a  HTA file from the malicious endpoint, “new-tech-savvy[.]com".

In other cases, Darktrace observed SSL and HTTP connections also attributed to the same simulated malware provider, highlighting Darktrace’s capability to distinguish between legitimate and simulated malware attack activity.

Figure 4: The Model Breach “Anomalous Connection/Low and Slow Exfiltration" displays the hostname of a simulated malware provider, confirming the detected malicious activity as the result of an attack simulation.
Figure 5: The Model Breach Event Log shows the SSL connections made to an endpoint associated with the simulated malware provider.
Figure 6: Darktrace’s Advanced Search displays SSL connection logs to the endpoint of the simulated malware provider around the time the simulation activity was observed.

Upon detection of the malicious activity occurring within affected customer networks, Darktrace’s Cyber AI Analyst™ investigated and correlated the events at machine speed. Figure 8 illustrates the synopsis and additional technical information that AI Analyst generated on one customer’s environment, detailing that over 220 HTTP queries to 18 different endpoints for a single device were seen. The investigation process can also be seen in the screenshot, showcasing Darktrace’s ability to provide ‘explainable AI’ detail. AI Analyst was able to autonomously search for all HTTP connections made by the breach device and identified a single suspicious software agent making one HTTP request to the endpoint, 45.95.147[.]236.

Furthermore, the malicious endpoints, 45.95.147[.]236, previously observed in SSH attacks using brute-force or stolen credentials, and “tangible-drink.surge[.]sh”, associated with the Androxgh0st malware [8] [9] [10], were detected to have been requested by another device.

This highlights Darktrace’s ability to link and correlate seemingly separate events occurring on different devices, which could indicate a malicious attack spreading across the network.  AI Analyst was also able to identify a username associated with the simulated malware prior to the activity through Kerberos Authentication Service (AS) requests. The device in question was also tagged as a ‘Security Device’ – such tags provide human analysts with valuable context about expected device activity, and in this case, the tag corroborates with the testing activity seen. This exemplifies how Darktrace’s Cyber AI Analyst takes on the labor-intensive task of analyzing thousands of connections to hundreds of endpoints at a rapid pace, then compiling results into a single pane that provides customer security teams with the information needed to evaluate activities observed on a device.

All in all, this demonstrates how Darktrace’s Self-Learning AI is capable of offering an unparalleled level of awareness and visibility over any anomalous and potentially malicious behavior on the network, saving security teams and administrators a great deal of time.

Figure 7: Cyber AI Analyst Incident Log containing a summary of the attack simulation activity,, including relevant technical details, and the AI investigation process.

Conclusion

Simulated cyber-attacks represent the ever-present challenge of testing and validating security defenses, while the threat of legitimate compromise exemplifies the constant risk of cyber threats in today’s digital landscape. Darktrace emerges as the solution to this conflict, offering real-time detection and response capabilities that identify and mitigate simulated and authentic threats alike.

While simulations are crafted to mimic legitimate threats within predefined parameters and controlled environments, the capabilities of Darktrace DETECT transcend these limitations. Even in scenarios where intent is not malicious, Darktrace’s ability to identify anomalies and raise alerts remains unparalleled. Moreover, Darktrace’s AI Analyst and autonomous response technology, RESPOND, underscore Darktrace’s indispensable role in safeguarding organizations against emerging threats.

Credit to Priya Thapa, Cyber Analyst, Tiana Kelly, Cyber Analyst & Analyst Team Lead

Appendices

Model Breaches

Darktrace DETECT Model Breach Coverage

Anomalous File / Incoming HTA File

Anomalous Connection / Low and Slow Exfiltration

Darktrace RESPOND Model Breach Coverage

§  Antigena / Network/ External Threat/ Antigena File then New Outbound Block

Cyber AI Analyst Incidents

• Possible HTTP Command and Control

• Suspicious File Download

List of IoCs

IP Address

38.52.220[.]2 - Malicious Endpoint

46.249.58[.]40 - Malicious Endpoint

45.95.147[.]236 - Malicious Endpoint

Hostname

tangible-drink.surge[.]sh - Malicious Endpoint

new-tech-savvy[.]com - Malicious Endpoint

References

1.     https://xmcyber.com/glossary/what-are-breach-and-attack-simulations/

2.     https://www.picussecurity.com/resource/glossary/what-is-an-attack-simulation

3.     https://success.trendmicro.com/dcx/s/solution/1123281-remcos-malware-information?language=en_US&sfdcIFrameOrigin=null

4.     https://www.virustotal.com/gui/url/c145cf7010545791602e9585f447347c75e5f19a0850a24e12a89325ded88735

5.     https://www.virustotal.com/gui/url/7afd19e5696570851e6413d08b6f0c8bd42f4b5a19d1e1094e0d1eb4d2e62ce5

6.     https://thehackernews.com/2024/01/uac-0050-group-using-new-phishing.html

7.     https://www.uptycs.com/blog/remcos-rat-uac-0500-pipe-method

8.     https://www.virustotal.com/gui/ip-address/45.95.147.236/community

9.     https://www.virustotal.com/gui/domain/tangible-drink.surge.sh/community

10.  https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-016a

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Priya Thapa
Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

January 8, 2026

Under Medusa’s Gaze: How Darktrace Uncovers RMM Abuse in Ransomware Campaigns

Default blog imageDefault blog image

What is Medusa Ransomware in 2025?

In 2025, the Medusa Ransomware-as-a-Service (RaaS) emerged as one of the top 10 most active ransomware threat actors [1]. Its growing impact prompted a joint advisory from the US Cybersecurity and Infrastructure Security Agency (CISA) and the Federal Bureau of Investigation (FBI) [3]. As of January 2026, more than 500 organizations have fallen victim to Medusa ransomware [2].

Darktrace previously investigated Medusa in a 2024 blog, but the group’s rapid expansion and new intelligence released in late 2025 has lead Darktrace’s Threat Research team to  investigate further. Recent findings include Microsoft’s research on Medusa actors exploiting a vulnerability in Fortra’s GoAnywhere MFT License Servlet (CVE-2025-10035)[4] and Zencec’s report on Medusa’s abuse of flaws in SimpleHelp’s remote support software (CVE-2024-57726, CVE-2024-57727, CVE-2024-57728) [5].

Reports vary on when Medusa first appeared in the wild. Some sources mention June 2021 as the earliest sightings, while others point to late 2022, when its developers transitioned to the RaaS model, as the true beginning of its operation [3][11].

Madusa Ransomware history and background

The group behind Medusa is known by several aliases, including Storm-1175 and Spearwing [4] [7]. Like its mythological namesake, Medusa has many “heads,” collaborating with initial access brokers (IABs) and, according to some evidence, affiliating with Big Game Hunting (BGH) groups such as Frozen Spider, as well as the cybercriminal group UNC7885 [3][6][13].

Use of Cyrillic in its scripts, activity on Russian-language cybercrime forums, slang unique to Russian criminal subcultures, and avoidance of targets in Commonwealth of Independent States (CIS) countries suggest that Medusa operates from Russia or an allied state [11][12].

Medusa ransomware should not be confused with other similarly named malware, such as the Medusa Android Banking Trojan, the Medusa Botnet/Medusa Stealer, or MedusaLocker ransomware. It is easily distinguishable from these variants because it appends the extension .MEDUSA to encrypted files and drops the ransom note !!!READ_ME_MEDUSA!!!.txt on compromised systems [8].

Who does Madusa Ransomware target?

The group appears to show little restraint, indiscriminately attacking organizations across all sectors, including healthcare, and is known to employ triple extortion tactics whereby sensitive data is encrypted, victims are threatened with data leaks, and additional pressure is applied through DDoS attacks or contacting the victim’s customers, rather than the more common double extortion model [13].

Madusa Ransomware TTPs

To attain initial access, Medusa actors typically purchase access to already compromised devices or accounts via IABs that employ phishing, credential stuffing, or brute-force attacks, and also target vulnerable or misconfigured Internet-facing systems.

In addition to the GoAnywhere MFT and SimpleHelp RMM flaws, other vulnerabilities exploited in Medusa attacks include ConnectWise ScreenConnect RMM (CVE-2024-1709), Microsoft Exchange Server (CVE-2021-34473, also known as ProxyShell), and Fortinet Enterprise Management Servers (CVE-2023-48788) [18][19][20][21][24][25].

Darktrace’s Coverage of Medusa Ransomware

Between December 2023 and November 2025, Darktrace observed multiple cases of file encryption related to Medusa ransomware across its customer base. When enabled, Darktrace’s Autonomous Response capability intervened early in the attack chain, blocking malicious activity before file encryption could begin.

Some of the affected were based in Europe, the Middle East and Africa (EMEA), others in the Americas (AMS), and the remainder in the Asia-Pacific and Japan region. The most impacted sectors were financial services and the automotive industry, followed by healthcare, and finally organizations in arts, entertainment and recreation, ICT, and manufacturing.

Remote Monitoring and Management (RMM) tool abuse

In most customer environments where Medusa file encryption attempts were observed, and in one case where the compromise was contained before encryption, unusual external HTTP connections associated with JWrapper were also detected. JWrapper is a legitimate tool designed to simplify the packaging, distribution, and management of Java applications, enabling the creation of executables that run across different operating systems. Many of the destination IP addresses involved in this activity were linked to SimpleHelp servers or associated with Atera.

Medusa actors appear to favor RMM tools such as SimpleHelp. Unpatched or misconfigured SimpleHelp RMM servers can serve as an initial access vector to the victims’ infrastructure.  After gaining access to SimpleHelp management servers, the threat actors edit server configuration files to redirect existing SimpleHelp RMM agents to communicate with unauthorized servers under their control.

The SimpleHelp tool is not only used for command-and-control (C2) and enabling persistence but is also observed during lateral movement within the network, downloading additional attack tools, data exfiltration, and even ransomware binary execution. Other legitimate remote access tools abused by Medusa in a similar manner to evade detection include Atera, AnyDesk, ScreenConnect, eHorus, N-able, PDQ Deploy/Inventory, Splashtop, TeamViewer, NinjaOne, Navicat, and MeshAgent [4][5][15][16][17].

Data exfiltration

Another correlation among Darktrace customers affected by Medusa was observed during the data exfiltration phase. In several environments, data was exfiltrated to the endpoints erp.ranasons[.]com or pruebas.pintacuario[.]mx (143.110.243[.]154, 144.217.181[.]205) over ports 443, 445, and 80. erp.ranasons[.]com was seemingly active between November 2024 and September 2025, while pruebas.pintacuario[.]mx was seen from November 2024 to March 2025. Evidence suggests that pruebas.pintacuario[.]mx previously hosted a SimpleHelp server [22][23].

Apart from RMM tools, Medusa is also known to use Rclone and Robocopy for data exfiltration [3][19]. During one Medusa compromise detected in mid-2024, the customer’s data was exfiltrated to external destinations associated with the Ngrok proxy service using an SSH-2.0-rclone client.

Medusa Compromise Leveraging SimpleHelp

In Q4 2025, Darktrace assisted a European company impacted by Medusa ransomware. The organization had partial Darktrace / NETWORK coverage and had configured Darktrace’s Autonomous Response capability to require manual confirmation for all actions. Despite these constraints, data received through the customer’s security integration with CrowdStrike Falcon enabled Darktrace analysts to reconstruct the attack chain, although the initial access vector remains unclear due to limited visibility.

In late September 2025, a device out of the scope of Darktrace's visibility began scanning the network and using RDP, NTLM/SMB, DCE_RPC, and PowerShell for lateral movement.

CrowdStrike “Defense Evasion: Disable or Modify Tools” alerts related to a suspicious driver (c:\windows\[0-9a-b]{4}.exe) and a PDQ Deploy executable (share=\\<device_hostname>\ADMIN$ file=AdminArsenal\PDQDeployRunner\service-1\exec\[0-9a-b]{4}.exe) suggest that the attackers used the Bring Your Own Vulnerable Driver (BYOVD) technique to terminate antivirus processes on network devices, leveraging tools such as KillAV or AbyssWorker along with the PDQ Software Deployment solution [19][26].

A few hours later, Darktrace observed the same device that had scanned the network writing Temp\[a-z]{2}.exe over SMB to another device on the same subnet. According to data from the CrowdStrike alert, this executable was linked to an RMM application located at C:\Users\<compromised_user>\Documents\[a-z]{2}.exe. The same compromised user account later triggered a CrowdStrike “Command and Control: Remote Access Tools” alert when accessing C:\ProgramData\JWrapper-Remote Access\JWrapper-Remote Access Bundle-[0-9]{11}\JWrapperTemp-[0-9]{10}-[0-9]{1}-app\bin\windowslauncher.exe [27].

An executable file associated with the SimpleHelp RMM tool being written to other devices using the SMB protocol, as detected by Darktrace.
Figure 1: An executable file associated with the SimpleHelp RMM tool being written to other devices using the SMB protocol, as detected by Darktrace.

Soon after, the destination device and multiple other network devices began establishing connections to 31.220.45[.]120 and 213.183.63[.]41, both of which hosted malicious SimpleHelp RMM servers. These C2 connections continued for more than 20 days after the initial compromise.

CrowdStrike integration alerts for the execution of robocopy . "c:\windows\\" /COPY:DT /E /XX /R:0 /W:0 /NP /XF RunFileCopy.cmd /IS /IT commands on several Windows servers, suggested that this utility was likely used to stage files in preparation for data exfiltration [19].

Around two hours later, Darktrace detected another device connecting to the attacker’s SimpleHelp RMM servers. This internal server had ‘doc’ in its hostname, indicating it was likely a file server. It was observed downloading documents from another internal server over SMB and uploading approximately 70 GiB of data to erp.ranasons[.]com (143.110.243[.]154:443).

Data uploaded to erp.ranasons[.]com and the number of model alerts from the exfiltrating device, represented by yellow and orange dots.
Figure 2: Data uploaded to erp.ranasons[.]com and the number of model alerts from the exfiltrating device, represented by yellow and orange dots.

Darktrace’s Cyber AI Analyst autonomously investigated the unusual connectivity, correlating the separate C2 and data exfiltration events into a single incident, providing greater visibility into the ongoing attack.

Cyber AI Analyst identified a file server making C2 connections to an attacker-controlled SimpleHelp server (213.183.63[.]41) and exfiltrating data to erp.ranasons[.]com.
Figure 3: Cyber AI Analyst identified a file server making C2 connections to an attacker-controlled SimpleHelp server (213.183.63[.]41) and exfiltrating data to erp.ranasons[.]com.
The same file server that connected to 213.183.63[.]41 and exfiltrated data to erp.ranasons[.]com was also observed attempting to connect to an IP address associated with Moscow, Russia (193.37.69[.]154:7070).
Figure 4: The same file server that connected to 213.183.63[.]41 and exfiltrated data to erp.ranasons[.]com was also observed attempting to connect to an IP address associated with Moscow, Russia (193.37.69[.]154:7070).

One of the devices connecting to the attacker's SimpleHelp RMM servers was also observed downloading 35 MiB from [0-9]{4}.filemail[.]com. Filemail, a legitimate file-sharing service, has reportedly been abused by Medusa actors to deliver additional malicious payloads [11].

A device controlled remotely via SimpleHelp downloading additional tooling from the Filemail file-sharing service.
Figure 5: A device controlled remotely via SimpleHelp downloading additional tooling from the Filemail file-sharing service.

Finally, integration alerts related to the ransomware binary, such as c:\windows\system32\gaze.exe and <device_hostname>\ADMIN$ file=AdminArsenal\PDQDeployRunner\service-1\exec\gaze.exe, along with “!!!READ_ME_MEDUSA!!!.txt” ransom notes were observed on network devices. This indicates that file encryption in this case was most likely carried out directly on the victim hosts rather than via the SMB protocol [3].

Conclusion

Threat actors, including nation-state actors and ransomware groups like Medusa, have long abused legitimate commercial RMM tools, typically used by system administrators for remote monitoring, software deployment, and device configuration, instead of relying on remote access trojans (RATs).

Attackers employ existing authorized RMM tools or install new remote administration software to enable persistence, lateral movement, data exfiltration, and ingress tool transfer. By mimicking legitimate administrative behavior, RMM abuse enables attackers to evade detection, as security software often implicitly trusts these tools, allowing attackers to bypass traditional security controls [28][29][30].

To mitigate such risks, organizations should promptly patch publicly exposed RMM servers and adopt anomaly-based detection solutions, like Darktrace / NETWORK, which can distinguish legitimate administrative activity from malicious behavior, applying rapid response measures through its Autonomous Response capability to stop attacks in their tracks.

Darktrace delivers comprehensive network visibility and Autonomous Response capabilities, enabling real-time detection of anomalous activity and rapid mitigation, even if an organization fall under Medusa’s gaze.

Credit to Signe Zaharka (Principal Cyber Analyst) and Emma Foulger (Global Threat Research Operations Lead

Edited by Ryan Traill (Analyst Content Lead)

Appendices

List of Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence + Time Observed

185.108.129[.]62 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - March 7, 2023

185.126.238[.]119 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - November 26-27, 2024

213.183.63[.]41 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - November 28, 2024 - Sep 30, 2025

213.183.63[.]42 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - July 4 -9 , 2024

31.220.45[.]120 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - September 12 - Oct 20 , 2025

91.92.246[.]110 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - May 24, 2024

45.9.149[.]112:15330 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - June 21, 2024

89.36.161[.]12 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - June 26-28, 2024

193.37.69[.]154:7070 IP address Suspicious RU IP seen on a device being controlled via SimpleHelp and exfiltrating data to a Medusa related endpoint - September 30 - October 20, 2025

erp.ranasons[.]com·143.110.243[.]154 Hostname Data exfiltration destination - November 27, 2024 - September 30, 2025

pruebas.pintacuario[.]mx·144.217.181[.]205 - Hostname Data exfiltration destination - November 27, 2024  -  March 26, 2025

lirdel[.]com · 44.235.83[.]125/a.msi (1b9869a2e862f1e6a59f5d88398463d3962abe51e19a59) File & hash Atera related file downloaded with PowerShell - June 20, 2024

wizarr.manate[.]ch/108.215.180[.]161:8585/$/1dIL5 File Suspicious file observed on one of the devices exhibiting unusual activity during a Medusa compromise - February 28, 2024

!!!READ_ME_MEDUSA!!!.txt" File - Ransom note

*.MEDUSA - File extension        File extension added to encrypted files

gaze.exe – File - Ransomware binary

Darktrace Model Coverage

Darktrace / NETWORK model detections triggered during connections to attacker controlled SimpleHelp servers:

Anomalous Connection/Anomalous SSL without SNI to New External

Anomalous Connection/Multiple Connections to New External UDP Port

Anomalous Connection/New User Agent to IP Without Hostname

Anomalous Connection/Rare External SSL Self-Signed

Anomalous Connection/Suspicious Self-Signed SSL

Anomalous File/EXE from Rare External Location

Anomalous Server Activity/Anomalous External Activity from Critical Network Device

Anomalous Server Activity/New User Agent from Internet Facing System

Anomalous Server Activity/Outgoing from Server

Anomalous Server Activity/Rare External from Server

Compromise/High Volume of Connections with Beacon Score

Compromise/Large Number of Suspicious Failed Connections

Compromise/Ransomware/High Risk File and Unusual SMB

Device/New User Agent

Unusual Activity/Unusual External Data to New Endpoint

Unusual Activity/Unusual External Data Transfer

Darktrace / NETWORK Model Detections during the September/October 2025 Medusa attack:

Anomalous Connection / Data Sent to Rare Domain

Anomalous Connection / Download and Upload

Anomalous Connection / Low and Slow Exfiltration

Anomalous Connection / New User Agent to IP Without Hostname

Anomalous Connection / Uncommon 1 GiB Outbound

Anomalous Connection / Unusual Admin RDP Session

Anomalous Connection / Unusual Incoming Long Remote Desktop Session

Anomalous Connection / Unusual Long SSH Session

Anomalous File / EXE from Rare External Location

Anomalous File / Internal/Unusual Internal EXE File Transfer

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Anomalous Server Activity / Outgoing from Server

Anomalous Server Activity / Rare External from Server

Compliance / Default Credential Usage

Compliance / High Priority Compliance Model Alert

Compliance / Outgoing NTLM Request from DC

Compliance / Possible Unencrypted Password File On Server

Compliance / Remote Management Tool On Server

Compromise / Large Number of Suspicious Failed Connections

Compromise / Large Number of Suspicious Successful Connections

Compromise / Ransomware/High Risk File and Unusual SMB

Compromise / Suspicious Beaconing Behaviour

Compromise / Suspicious HTTP and Anomalous Activity

Compromise / Sustained SSL or HTTP Increase

Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

Device / ICMP Address Scan

Device / Increase in New RPC Services

Device / Initial Attack Chain Activity

Device / Large Number of Model Alert

Device / Large Number of Model Alerts from Critical Network Device

Device / Lateral Movement and C2 Activity

Device / Multiple C2 Model Alert

Device / Network Scan

Device / Possible SMB/NTLM Reconnaissance

Device / Spike in LDAP Activity

Device / Suspicious Network Scan Activity

Device / Suspicious SMB Scanning Activity

Security Integration / High Severity Integration Incident

Security Integration / Low Severity Integration Incident

Unusual Activity / Enhanced Unusual External Data Transfer

Unusual Activity / Internal Data Transfer

Unusual Activity / Unusual External Activity

Unusual Activity / Unusual External Data to New Endpoint

Unusual Activity / Unusual External Data Transfer

User / New Admin Credentials on Server

Autonomous Response Actions

Antigena / Network/External Threat/Antigena File then New Outbound Block

Antigena / Network/External Threat/Antigena Ransomware Block

Antigena / Network/External Threat/Antigena Suspicious Activity Block

Antigena / Network/External Threat/Antigena Suspicious File Block

Antigena / Network/Insider Threat/Antigena Internal Anomalous File Activity

Antigena / Network/Insider Threat/Antigena Internal Data Transfer Block

Antigena / Network/Insider Threat/Antigena Large Data Volume Outbound Block

Antigena / Network/Insider Threat/Antigena Network Scan Block

Antigena / Network/Insider Threat/Antigena Unusual Privileged User Activities Block

Antigena / Network/Significant Anomaly/Antigena Alerts Over Time Block

Antigena / Network/Significant Anomaly/Antigena Controlled and Model Alert

Antigena / Network/Significant Anomaly/Antigena Enhanced Monitoring from Server Block

Antigena / Network/Significant Anomaly/Antigena Significant Server Anomaly Block

Antigena / Network/Significant Anomaly/Repeated Antigena Alerts

MITRE ATT&CK Mapping

Technique Name, Tactic, ID, Sub-Technique

Application Layer Protocol , COMMAND AND CONTROL , T1071

Automated Collection , COLLECTION , T1119

Automated Exfiltration , EXFILTRATION , T1020

Brute Force , CREDENTIAL ACCESS , T1110

Client Configurations , RECONNAISSANCE , T1592.004 , T1592

Cloud Accounts , DEFENSE EVASION ,  PERSISTENCE ,  PRIVILEGE ESCALATION ,  INITIAL ACCESS , T1078.004 , T1078

Command-Line Interface , EXECUTION ICS , T0807

Credential Stuffing , CREDENTIAL ACCESS , T1110.004 , T1110

Data Encrypted for Impact , IMPACT , T1486

Data from Network Shared Drive , COLLECTION , T1039

Data Obfuscation , COMMAND AND CONTROL , T1001

Data Staged , COLLECTION , T1074

Data Transfer Size Limits , EXFILTRATION , T1030

Default Accounts , DEFENSE EVASION ,  PERSISTENCE ,  PRIVILEGE ESCALATION ,  INITIAL ACCESS , T1078.001 , T1078

Default Credentials , LATERAL MOVEMENT ICS , T0812

Distributed Component Object Model , LATERAL MOVEMENT , T1021.003 , T1021

Drive-by Compromise , INITIAL ACCESS ICS , T0817

Drive-by Compromise , INITIAL ACCESS , T1189

Email Collection , COLLECTION , T1114

Exfiltration Over Alternative Protocol , EXFILTRATION , T1048

Exfiltration Over C2 Channel , EXFILTRATION , T1041

Exfiltration to Cloud Storage , EXFILTRATION , T1567.002 , T1567

Exploit Public-Facing Application , INITIAL ACCESS , T1190

Exploitation for Privilege Escalation , PRIVILEGE ESCALATION , T0890

Exploitation of Remote Services , LATERAL MOVEMENT , T1210

Exploits , RESOURCE DEVELOPMENT , T1588.005 , T1588

File and Directory Discovery , DISCOVERY , T1083

File Deletion , DEFENSE EVASION , T1070.004 , T1070

Graphical User Interface , EXECUTION ICS , T0823

Ingress Tool Transfer , COMMAND AND CONTROL , T1105

Lateral Tool Transfer , LATERAL MOVEMENT , T1570

LLMNR/NBT-NS Poisoning and SMB Relay , CREDENTIAL ACCESS ,  COLLECTION , T1557.001 , T1557

Malware , RESOURCE DEVELOPMENT , T1588.001 , T1588

Network Service Scanning , DISCOVERY , T1046

Network Share Discovery , DISCOVERY , T1135

Non-Application Layer Protocol , COMMAND AND CONTROL , T1095

Non-Standard Port , COMMAND AND CONTROL , T1571

One-Way Communication , COMMAND AND CONTROL , T1102.003 , T1102

Pass the Hash , DEFENSE EVASION ,  LATERAL MOVEMENT , T1550.002 , T1550

Password Cracking , CREDENTIAL ACCESS , T1110.002 , T1110

Password Guessing , CREDENTIAL ACCESS , T1110.001 , T1110

Password Spraying , CREDENTIAL ACCESS , T1110.003 , T1110

Program Download , LATERAL MOVEMENT ICS , T0843

Program Upload , COLLECTION ICS , T0845

Remote Access Software , COMMAND AND CONTROL , T1219

Remote Desktop Protocol , LATERAL MOVEMENT , T1021.001 , T1021

Remote System Discovery , DISCOVERY , T1018

Scanning IP Blocks , RECONNAISSANCE , T1595.001 , T1595

Scheduled Transfer , EXFILTRATION , T1029

Spearphishing Attachment , INITIAL ACCESS ICS , T0865

Standard Application Layer Protocol , COMMAND AND CONTROL ICS , T0869

Supply Chain Compromise , INITIAL ACCESS ICS , T0862

User Execution , EXECUTION ICS , T0863

Valid Accounts , DEFENSE EVASION ,  PERSISTENCE ,  PRIVILEGE ESCALATION ,  INITIAL ACCESS , T1078

Valid Accounts , PERSISTENCE ICS ,  LATERAL MOVEMENT ICS , T0859

Vulnerabilities , RESOURCE DEVELOPMENT , T1588.006 , T1588

Vulnerability Scanning , RECONNAISSANCE , T1595.002 , T1595

Web Protocols , COMMAND AND CONTROL , T1071.001 , T1071

References

1. https://www.intel471.com/blog/threat-hunting-case-study-medusa-ransomware

2. https://www.ransomware.live/group/medusa

3. https://www.cisa.gov/news-events/cybersecurity-advisories/aa25-071a

4. https://www.microsoft.com/en-us/security/blog/2025/10/06/investigating-active-exploitation-of-cve-2025-10035-goanywhere-managed-file-transfer-vulnerability/

5. https://zensec.co.uk/blog/how-rmm-abuse-fuelled-medusa-dragonforce-attacks/

6. https://www.checkpoint.com/cyber-hub/threat-prevention/ransomware/medusa-ransomware-group/

7. https://cyberpress.org/medusa-ransomware-attacks-spike-42/

8. https://blog.barracuda.com/2025/02/25/medusa-ransomware-and-its-cybercrime-ecosystem

10. https://www.cyberdaily.au/security/10021-more-monster-than-myth-unpacking-the-medusa-ransomware-operation

11. https://unit42.paloaltonetworks.com/medusa-ransomware-escalation-new-leak-site/

12. https://www.bitdefender.com/en-us/blog/businessinsights/medusa-ransomware-a-growing-threat-with-a-bold-online-presence

13. https://redpiranha.net/news/medusa-ransomware-everything-you-need-know

14.  https://www.theregister.com/2025/03/13/medusa_ransomware_infects_300_critical/

15. https://www.s-rminform.com/latest-thinking/cyber-threat-advisory-medusa-and-the-simplehelp-vulnerability

16. https://nagomisecurity.com/medusa-ransomware-us-cert-alert

17. https://arcticwolf.com/resources/blog/arctic-wolf-observes-campaign-exploiting-simplehelp-rmm-software-for-initial-access/

18. https://securityboulevard.com/2025/04/medusa-ransomware-inside-the-2025-resurgence-of-one-of-the-internets-most-aggressive-threats/

19. https://thehackernews.com/2025/03/medusa-ransomware-hits-40-victims-in.html

20.  https://www.quorumcyber.com/threat-intelligence/critical-alert-medusa-ransomware-threat-highlighted-by-fbi-cisa-and-ms-isac/

21. https://brandefense.io/blog/stone-gaze-in-depth-analysis-of-medusa-ransomware/

22. https://www.darktrace.com/ja/blog/2025-cyber-threat-landscape-darktraces-mid-year-review

23. https://www.joesandbox.com/analysis/1576447/0/html

24. https://blog.barracuda.com/2025/02/25/medusa-ransomware-and-its-cybercrime-ecosystem

25. https://shassit.mit.edu/news/medusa-ransomware-attacks-on-gmail/

26. https://thehackernews.com/2025/03/medusa-ransomware-uses-malicious-driver.html

27. https://www.cisa.gov/news-events/cybersecurity-advisories/aa25-163a

28. https://www.catonetworks.com/blog/cato-ctrl-investigation-of-rmm-tools/

29. https://redcanary.com/threat-detection-report/trends/rmm-tools/

30. https://www.proofpoint.com/us/blog/threat-insight/remote-monitoring-and-management-rmm-tooling-increasingly-attackers-first-choice

Continue reading
About the author
Signe Zaharka
Principal Cyber Analyst

Blog

/

Proactive Security

/

January 8, 2026

How a leading bank is prioritizing risk management to power a resilient future

Default blog imageDefault blog image

As one of the region’s most established financial institutions, this bank sits at the heart of its community’s economic life – powering everything from daily transactions to business growth and long-term wealth planning. Its blend of physical branches and advanced digital services gives customers the convenience they expect and the personal trust they rely on. But as the financial world becomes more interconnected and adversaries more sophisticated, safeguarding that trust requires more than traditional cybersecurity. It demands a resilient, forward-leaning approach that keeps pace with rising threats and tightening regulatory standards.

A complex risk landscape demands a new approach

The bank faced a challenge familiar across the financial sector: too many tools, not enough clarity. Vulnerability scans, pen tests, and risk reports all produced data, yet none worked together to show how exposures connected across systems or what they meant for day-to-day operations. Without a central platform to link and contextualize this data, teams struggled to see how individual findings translated into real exposure across the business.

  • Fragmented risk assessments: Cyber and operational risks were evaluated in silos, often duplicated across teams, and lacked the context needed to prioritize what truly mattered.
  • Limited executive visibility: Leadership struggled to gain a complete, real-time view of trends or progress, making risk ownership difficult to enforce.
  • Emerging compliance pressure: This gap also posed compliance challenges under the EU’s Digital Operational Resilience Act (DORA), which requires financial institutions to demonstrate continuous oversight, effective reporting, and the ability to withstand and recover from cyber and IT disruptions.
“The issue wasn’t the lack of data,” recalls the bank’s Chief Technology Officer. “The challenge was transforming that data into a unified, contextualized picture we could act on quickly and decisively.”

As the bank advanced its digital capabilities and embraced cloud services, its risk environment became more intricate. New pathways for exploitation emerged, human factors grew harder to quantify, and manual processes hindered timely decision-making. To maintain resilience, the security team sought a proactive, AI-powered platform that could consolidate exposures, deliver continuous insight, and ensure high-value risks were addressed before they escalated.

Choosing Darktrace to unlock proactive cyber resilience

To reclaim control over its fragmented risk landscape, the bank selected Darktrace / Proactive Exposure Management™ for cyber risk insight. The solution’s ability to consolidate scanner outputs, pen test results, CVE data, and operational context into one AI-powered view made it the clear choice. Darktrace delivered comprehensive visibility the team had long been missing.

By shifting from a reactive model to proactive security, the bank aimed to:

  • Improve resilience and compliance with DORA
  • Prioritize remediation efforts with greater accuracy
  • Eliminate duplicated work across teams
  • Provide leadership with a complete view of risk, updated continuously
  • Reduce the overall likelihood of attack or disruption

The CTO explains: “We needed a solution that didn’t just list vulnerabilities but showed us what mattered most for our business – how risks connected, how they could be exploited, and what actions would create the biggest reduction in exposure. Darktrace gave us that clarity.”

Targeting the risks that matter most

Darktrace / Proactive Exposure Management offered the bank a new level of visibility and control by continuously analyzing misconfigurations, critical attack paths, human communication patterns, and high-value assets. Its AI-driven risk scoring allowed the team to understand which vulnerabilities had meaningful business impact, not just which were technically severe.

Unifying exposure across architectures

Darktrace aggregates and contextualizes data from across the bank’s security stack, eliminating the need to manually compile or correlate findings. What once required hours of cross-team coordination now appears in a single, continuously updated dashboard.

Revealing an adversarial view of risk

The solution maps multi-stage, complex attack paths across network, cloud, identity systems, email environments, and endpoints – highlighting risks that traditional CVE lists overlook.

Identifying misconfigurations and controlling gaps

Using Self-Learning AI, Darktrace / Proactive Exposure Management spots misconfigurations and prioritizes them based on MITRE adversary techniques, business context, and the bank’s unique digital environment.

Enhancing red-team and pen test effectiveness

By directing testers to the highest-value targets, Darktrace removes guesswork and validates whether defenses hold up against realistic adversarial behavior.

Supporting DORA compliance

From continuous monitoring to executive-ready reporting, the solution provides the transparency and accountability the bank needs to demonstrate operational resilience frameworks.

Proactive security delivers tangible outcomes

Since deploying Darktrace / Proactive Exposure Management, the bank has significantly strengthened its cybersecurity posture while improving operational efficiency.

Greater insight, smarter prioritization, stronger defensee

Security teams are now saving more than four hours per week previously spent aggregating and analyzing risk data. With a unified view of their exposure, they can focus directly on remediation instead of manually correlating multiple reports.

Because risks are now prioritized based on business impact and real-time operational context, they no longer waste time on low-value tasks. Instead, critical issues are identified and resolved sooner, reducing potential windows for exploitation and strengthening the bank’s ongoing resilience against both known and emerging threats.

“Our goal was to move from reactive to proactive security,” the CTO says. “Darktrace didn’t just help us achieve that, it accelerated our roadmap. We now understand our environment with a level of clarity we simply didn’t have before.”

Leadership clarity and stronger governance

Executives and board stakeholders now receive clear, organization-wide visibility into the bank’s risk posture, supported by consistent reporting that highlights trends, progress, and areas requiring attention. This transparency has strengthened confidence in the bank’s cyber resilience and enabled leadership to take true ownership of risk across the institution.

Beyond improved visibility, the bank has also deepened its overall governance maturity. Continuous monitoring and structured oversight allow leaders to make faster, more informed decisions that strategically align security efforts with business priorities. With a more predictable understanding of exposure and risk movement over time, the organization can maintain operational continuity, demonstrate accountability, and adapt more effectively as regulatory expectations evolve.

Trading stress for control

With Darktrace, leaders now have the clarity and confidence they need to report to executives and regulators with accuracy. The ability to see organization-wide risk in context provides assurance that the right issues are being addressed at the right time. That clarity is also empowering security analysts who no longer shoulder the anxiety of wondering which risks matter most or whether something critical has slipped through the cracks. Instead, they’re working with focus and intention, redirecting hours of manual effort into strategic initiatives that strengthen the bank’s overall resilience.

Prioritizing risk to power a resilient future

For this leading financial institution, Darktrace / Proactive Exposure Management has become the foundation for a more unified, data-driven, and resilient cybersecurity program. With clearer, business-relevant priorities, stronger oversight, and measurable efficiency gains, the bank has strengthened its resilience and met demanding regulatory expectations without adding operational strain.

Most importantly, it shifted the bank’s security posture from a reactive stance to a proactive, continuous program. Giving teams the confidence and intelligence to anticipate threats and safeguard the people and services that depend on them.

Continue reading
About the author
Kelland Goodin
Product Marketing Specialist
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ