ブログ
/
AI
/
April 9, 2024

Moving Beyond XDR to Achieve True Cyber Resilience with Darktrace ActiveAI Security Platform

Announcing the new Darktrace ActiveAI Security Platform designed to transform security operations. This approach gives security teams unprecedented visibility across any area where Darktrace is deployed, including cloud, email, network, endpoints, and operational technology (OT).
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Mitchell Bezzina
VP, Product and Solutions Marketing
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Apr 2024

Evolving Threats Need Comprehensive Security

Attacker innovations have drastically increased the velocity, sophistication, and success of cyber security attacks, as seen with multi-domain and multi-stage attacks that are now widely used in adversary methodology.

When it comes to defense, traditional cyber security point solutions cannot keep up. They have a depth of intelligence in a specific domain but rely on existing attack data to detect threats. This allows the known to be stopped, but the uncertainty in identifying unknown threats creates an alert deluge. Security teams are then required to build processes to triage alerts, and manually combine data through APIs, integrations and rules – just to correlate incidents across multiple IT domains.

Traditional eXtended Detection and Response (XDR) rose to aid security teams, and while they are able to stitch together suspicious events from network, endpoint, and cloud, they still lack adequate domain coverage in areas such as email – where the majority of initial infection occurs – require human validation, prioritization, and triage, and ultimately remain reactive in nature.

Security teams are at a breaking point, with too many alerts, too little time, and fragmented support from a bloated vendor stack. Simply put, most organizations lack the human resources needed to maintain cyber resilience.

Introducing the Darktrace ActiveAI Security Platform

Darktrace ActiveAI Security was designed to transform security operations to a proactive state. Its AI trains on an organization’s specific business and IT information, learning the day-to-day normal operations, not yesterday's threat intelligence.

This approach gives security teams unprecedented visibility across any area where Darktrace is deployed, including cloud, email, network, endpoints, identities, and operational technology (OT). With this understanding of the business, the AI can detect and respond to known and unknown threats with precision, even those threats never seen before.

Darktrace’s proactive and incident response tools help your team get ahead of security gaps and potential process risk by understanding your internal and external threat surfaces and identifying where preparedness can be improved.

A unique and patented investigative AI, called Cyber AI Analyst, operates across the platform to augment human teams with automation and efficiency gains, performing continuous investigations of prevalent alerts to redefine the SecOps workflow and help security analysts arrive at decisions quickly.  An extensive range of services aid customer resources in getting the most out of the Darktrace ActiveAI Security Platform.

Figure 1: Powered by a self-learning AI that understands your unique business, the Darktrace ActiveAI Security Platform provides coverage across the entire enterprise. Cyber AI Analyst, our investigative AI, investigates relevant alerts helping human security teams triage and prioritize all relevant alerts, even those from 3rd party security tools, to transform security operations.

Security operations and the incident lifecycle

SOC teams have three general areas of focus, and each can be supported by Darktrace ActiveAI Security

1. The benefits of being proactive

Darktrace ActiveAI Security helps teams become proactive by identifying and closing gaps before they are exploited. This reduces the impact and cost of attacks.  

The platform achieves this by looking at each organization to understand potential human and machine entry points for an attacker. In an upcoming update, our technology will also include firewall rule analysis for more precise attack path modeling.

The AI considers its findings with local business and IT context to identify the most risky and impactful devices, identities, and vulnerabilities, so teams can prioritize what to patch first.

Additionally, Darktrace ActiveAI Security boosts proactivity with incident readiness, supporting each organization’s people, processes, and technology with training simulations, dynamic playbooks, and readiness reports.

2. Complete visibility of known and novel threats

Darktrace ActiveAI Security Platform drives efficiencies during the active incident phase, saving time and effort while providing comprehensive and tailored protection. It applies context from enterprise data, ingested from both native sources (email, cloud, operational technology, endpoints, identity, applications, and networks) and external sources (third-party security tools and intelligence) to detect known, novel, and unknown threats.

Other security vendors aggregate and generalize data across their customers, treating threat detection with a big data approach. They extract intelligence, write new rules and signatures, and train their supervised machine running in the cloud. Only after that do they distribute new detections based on the changes in the threat landscape. That leaves a window of opportunity for attackers. For example, when Log4J struck, most vendors needed precious time to catch up and defend against it

Contrast that to Darktrace’s approach to detection. Our AI continuously trains on each organization’s unique business data, allowing it to function beyond known attacks in the threat landscape. Therefore, our AI can defend organizations even against attacks that have never been seen before because it focuses on each customer’s data instead of trying to win this big data problem.

While our AI has always been able to surface threats without needing to decrypt traffic, because it can surface anomalies in the characteristics of the overall communication, an upcoming update will soon make decryption possible for deeper forensic analysis.

This also leads to massive efficiency wins. For example, self-regulation and detection accuracy. If our AI keeps seeing certain types of anomalies in an environment, and if those are part of a legitimate business process, the AI will autonomously start lowering the alert severity, therefore reducing the burden on security teams to fine-tune detection and alerting.

3. AI-led investigation and response

Darktrace ActiveAI Security Platform helps teams triage, investigate, and respond to accelerate response time and reduce disruption.

Traditional security stacks use a lot of raw data combined with threat intelligence, like rules and signatures and supervised detections. The results are then put together and presented to the human team, who still needs to triage, understand, and investigate the situation.

Darktrace customers natively ingest raw data, apply anomaly detection and business learning, then build chains of generic anomalies which could include threat intelligence of third-party alerts. Those are then continuously investigated by our Cyber AI Analyst and put forward for human verification and actioning of next steps if they are deemed critical. This simplifies the triage process to save investigation time.

An upcoming feature for the Cyber AI Analyst allows teams to customize how it investigates each threat type, such as configuring what type of hypotheses are being run – giving teams more control. The result is a complete transformation of the triage process, where every relevant alert is investigated for the security team, those critical are prioritized for action, others await secondary investigation, or allow analysts to proactively review security gaps to stop future attacks of the same attack paths.

Last but not least, we help drive efficiencies by automating threat response with behavioral containment. That means our AI can identify and stop unusual behavior that indicates a threat while still allowing normal benign business activity to continue, all without the security team’s having to predefine every conceivable reaction.

Conclusion

Darktrace ActiveAI Security is a native, holistic, AI-driven platform built on over ten years of AI research. It helps security teams shift to more a productive mode, finding known and unknown attacks and transforming the SOC to drive efficiency gains. It does this across the whole incident lifecycle to lower risk, reduce time spent on active incidents, and drive return on investment.

For more information on the Darktrace Platform, download the solution brief here.

Join over 9,000 customers who have started their journey to the Darktrace ActiveAI Security Platform by selecting one of our leading cybersecurity solutions in Email Security, Network Detection and Response, Cloud Native Application Protection, and OT Security.

Discover more about our ever-strengthening platform with the upcoming changes coming to Darktrace/Email and Darktrace/OT.

Learn about the intersection of cyber and AI by downloading the State of AI Cyber Security 2024 report to discover global findings that may surprise you, insights from security leaders, and recommendations for addressing today’s top challenges that you may face, too.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Mitchell Bezzina
VP, Product and Solutions Marketing

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Default blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Default blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ