ブログ
/
Network
/
February 26, 2023

Prevent Cryptojacking Attacks with Darktrace AI Technology

Protect your business from cryptojackers with Darktrace AI! Discover how your business can benefit round-the-clock defense with AI Cybersecurity.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Victoria Baldie
Director of Analysis, ANZ
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
26
Feb 2023

Introduction: Crpyptojacking attacks

Despite the market value of cryptocurrency itself decreasing in the final quarter of 2022, the number of known cryptocurrency mining software variants had more than tripled compared to the previous year. The intensive resource demands of mining cryptocurrency has exacerbated the trend of malicious hijacking third-party computers causing slower processing speeds and higher energy bills for many companies.

Cryptomining is often overlooked by security teams but is indicative of a gap in an organization’s defense in depth technologies and represents unauthorized access to the digital estate. Ignoring cryptomining as a compliance issue can open the floodgates to further compromises and continued access to organizational resources by threat actors.

Although having a security team able to react to and investigate malicious resource hijacking attempts is essential, there will inevitably be occasions when relying on human response alone is not enough. Having a round-the-clock autonomous decision maker able to respond instantaneously is paramount to ensuring a 24/7 defense strategy.

In August 2022, Darktrace detected and responded to an ongoing incident of attempted cryptojacking on the network of a customer in the logistics sector, when a threat actor launched their attack outside of normal business hours in an effort to evade the detection of the human security team. This blog explores how Darktrace AI Analyst and the human SOC team worked in tandem to detect and contain this threat, while providing unparalleled visibility to the customer.

Darktrace coverage of cryptojacking

The initial compromise was detected when Darktrace / NETWORK observed a new user agent on a customer server attempting to connect to an external endpoint that was rarely visited outside of business hours. Darktrace AI Analyst autonomously investigated the endpoint and determined that it redirected to a domain which downloaded an executable file (.exe). Following this, the device began making connections to endpoints associated with mining the Monero cryptocurrency, which automatically triggered an Enhanced Monitoring model, whereupon the Darktrace SOC team sent a Proactive Threat Notification (PTN) to the customer, alerting their security team to this anomalous activity. 

The Darktrace SOC team liaised with the customer via the Ask the Expert (ATE) service, and confirmed the activity, initially reported by Darktrace’s AI Analyst investigation, was related to malicious cryptomining activity. Thereafter, Darktrace's Autonomous Response took immediate action by isolating six critical servers to contain the malicious cryptomining activity and prevent any further compromise.

Figure 1: Screenshot of AI Analyst detecting connections to a rare endpoint on port 9852 to URI //c/root /. Status code of 301 indicated a redirect.
Figure 2: Screenshot of AI Analyst’s detection and summary of a suspicious file, named ‘bean’, being downloaded via wget from a rare external endpoint.

The attack vector of the cryptomining malware was determined through a packet capture (PCAP) of the suspicious file detected by AI Analyst. The PCAP showed that following the initial download of the file, it modified its own permissions to become an executable. While the Darktrace SOC team continued its investigation, the customer was able to maintain contact with the team and gain full visibility over their network through the Darktrace Mobile App. 

Figure 3: Screenshot showing Darktrace’s AI Analyst detection of the cryptomining activity taking place on the customer network. 

Working in tandem, Darktrace was able to instantly identify and investigate the anomalous activity in real time and followed this up with an autonomous investigation with Darktrace AI Analyst, without the need for any human interaction. The Darktrace SOC team was then able supplement this autonomous response, providing precious reaction time for the customer to identify and mitigate this cryptojacking incident. 

Figure 4: Screenshot of the Packet Capture (PCAP) downloaded via the Darktrace UI during the SOC team’s deep packet inspection.

Interestingly, the IP addresses associated with this cryptomining had not been previously reported by open-source intelligence (OSINT) sources, with VirusTotal listing the first public scan as the same date as this attack. This reflects Darktrace’s ability to detect and respond to novel and previously undetected threats as soon as they arise directly through its AI capabilities.

Figure 5: Screenshot of VirusTotal results for the same file name, from the offending IP.
Figure 6: Screenshot of the URL portion of VirusTotal displaying the date, detections, HTTP status codes alongside the relevant URL.

Conclusion

The continued prevalence of malicious cryptomining software underlines the need for instantaneous and autonomous defenses. In addition to hardening an organization’s attack surface, responding to more compliance-focused threats like cryptomining will enable organizations to close gaps which lead to more damaging compromises. Darktrace’s suite of products offers both an AI-driven system which alerts users to malicious downloads and connections, and a dedicated SOC team which works in tandem with its AI to advise security teams and assist them in containing threats at their earliest stages.

In this case, the cryptomining malware was quickly identified and mitigated despite occurring outside of business hours, and there being a lack of OSINT information regarding its indicators of compromise. Leveraging AI gives security teams a round-the-clock defense that responds instantaneously to even novel threats. When combined with human SOC teams, Darktrace offers a formidable defense against an ever-growing sophisticated threat landscape.  

Credit to: Victoria Baldie, Director of Analysis.

Appendices

Darktrace Model Detections 

Below is a list of model breaches in order of trigger. 

  • Model Breach: Compromise / High Priority Crypto Currency Mining 
  • Model Breach: Device / Initial Breach Chain Compromise 
  • Model Breach: Compromise / Monero Mining 

IOCs

165.227.154[.]84 - IP Address - C2 Endpoint

c0136a24781c4ebcafb3c9fdeb22681f6df814b4 - SHA-256 - File downloaded

MITRE AT&CK Mapping

Lateral Movement:

T1210 - Exploit of Remote Services

Command and Control:

T1001 - Data Obfuscation 

T1571 - Non-Standard Port

T1095 – Non-Application Layer Port

T1071 – Web Protocols

Initial Access:

T1189 – Drive by Compromise

Resource Deployment:

T1588 – Malware

References

[1] https://securelist.com/cryptojacking-report-2022/107898/ 

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Victoria Baldie
Director of Analysis, ANZ

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Default blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Default blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ