Blog
/
Network
/
August 2, 2023

Darktrace's Detection of Ransomware & Syssphinx

Read how Darktrace identified an attack technique by the threat group, Syssphinx. Learn how Darktrace's quick identification process can spot a threat.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
02
Aug 2023

Introduction

As the threat of costly cyber-attacks continues represent a real concern to security teams across the threat landscape, more and more organizations are strengthening their defenses with additional security tools to identify attacks and protect their networks. As a result, malicious actors are being forced to adapt their tactics, modify existing variants of malicious software, or utilize entirely new variants.  

Symantec recently released an article about Syssphinx, the financially motivated cyber threat group previously known for their point-of-sale attacks. Syssphinx attempts to deploy ransomware on customer networks via a modified version of their ‘Sardonic’ backdoor. Such activity highlights the ability of threat actors to alter the composition and presentation of payloads, tools, and tactics.

Darktrace recently detected some of the same indicators suggesting a likely Syssphinx compromise within the network of a customer trialing the Darktrace DETECT™ and RESPOND™ products. Despite the potential for variations in the construction of backdoors and payloads used by the group, Darktrace’s anomaly-based approach to threat detection allowed it to stitch together a detailed account of compromise activity and identify the malicious activity prior to disruptive events on the customer’s network.

What is Syssphinx?

Syssphinx is a notorious cyber threat entity known for its financially motivated compromises.  Also referred to as FIN8, Syssphinx has been observed as early as 2016 and is largely known to target private sector entities in the retail, hospitality, insurance, IT, and financial sectors.[1]

Although Syssphinx primarily began focusing on point-of-sale style attacks, the activity associated with the group has more recently incorporated ransomware variants into their intrusions in a potential bid to further extract funds from target organizations.[2]

Syssphinx Sardonic Backdoor

Given this gradual opportunistic incorporation of ransomware, it should not be surprising that Syssphinx has slowly expanded its repertoire of tools.  When primarily performing point-of-sale compromises, the group was known for its use of point-of-sale specific malwares including BadHatch, PoSlurp/PunchTrack, and PowerSniff/PunchBuggy/ShellTea.[3]

However, in a seeming response to updates in detection systems while using previous indicators of compromise (IoCs), Syssphinx began to modify its BadHatch malware.  This resulted in the use of a C++ derived backdoor known as “Sardonic”, which has the ability to aggregate host credentials, spawn additional command sessions, and deliver payloads to compromised devices via dynamic-link library (DLL).[4],[5]

Analysis of the latest version of Sardonic reveals further changes to the malware to elude detection. These shifts include the implementation of the backdoor in the C programming language, and additional over-the-network communication obfuscation techniques. [6]

During the post-exploitation phase, the group tends to rely on “living-off-the-land” tactics, whereby an attacker utilizes tools already present within the organization’s digital environment to avoid detection. Syssphinx seems to utilize system-native tools such as PowerShell and the Windows Management Instrumentation (WMI) interface.[7] It is also not uncommon to see Windows-based vulnerability exploits employed on compromised devices. This has been observed by researchers who have examined previous iterations of Syssphinx backdoors.[8] Syssphinx also appears to exhibit elements of strategic patience and discipline in its operations, with significant time gaps in operations noted by researchers. During this time, it appears likely that updates and tweaks were applied to Syssphinx payloads.

Compromise Details

In late April 2023, Darktrace identified an active compromise on the network of a prospective customer who was trialing Darktrace DETECT+RESPOND. The customer, a retailer in EMEA with hundreds of tracked devices, reached out to the Darktrace Analyst team via the Ask the Expert (ATE) service for support and further investigation, following the encryption of their server and backup data storage in an apparent ransomware attack. Although the encryption events fell outside Darktrace’s purview due to a limited set up of trial appliances, Darktrace was able to directly track early stages of the compromise before exfiltration and encryption events began. If a full deployment had been set up and RESPOND functionality had been configured in autonomous response mode, Darktrace may have helped mitigate such encryption events and would have aided in the early identification of this ransomware attack.

Initial Intrusion and Establishment of Command and Control (C2) Infrastructure

As noted by security researchers, Syssphinx largely relies on social engineering and phishing emails to deliver its backdoor payloads. As there were no Darktrace/Email™ products deployed for this customer, it would be difficult to directly observe the exact time and manner of initial payload delivery related to this compromise. This is compounded by the fact that the customer had only recently began using Darktrace’s products during their trial period. Given the penchant for patience and delay by Syssphinx, it is possible that the intrusion began well before Darktrace had visibility of the organization’s network.

However, beginning on April 30, 2023, at 07:17:31 UTC, Darktrace observed the domain controller dc01.corp.XXXX  making repeated SSL connections to the endpoint 173-44-141-47[.]nip[.]io. In addition to the multiple open-source intelligence (OSINT) flags for this endpoint, the construction of the domain parallels that of the initial domain used to deliver a backdoor, as noted by Symantec in their analysis (37-10-71-215[.]nip[.]io). This activity likely represented the initial beaconing being performed by the compromised device. Additionally, an elevated level of incoming external data over port 443 was observed during this time, which may be associated with the delivery of the Sardonic backdoor payload. Given the unusual use of port 443 to perform SSH connections later seen in the kill chain of this attack, this activity could also parallel the employment of embedded backdoor payloads seen in the latest iteration of the Sardonic backdoor noted by Symantec.

Figure 1: Graph of the incoming external data surrounding the time of the initial establishment of command and control communication for the domain controller. As seen in the graph, the spike in incoming external data during this time may parallel the delivery of Syssphinx Sardonic backdoor.

Regardless, the domain controller proceeded to make repeated connections over port 443 to the noted domain.

Figure 2: Breach event log for the domain controller making repeated connections over port 443 to the rare external destination endpoint in constitute the establishment of C2 communication.

Internal Reconnaissance/Privilege Escalation

Following the establishment of C2 communication, Darktrace detected numerous elements of internal reconnaissance. On Apr 30, 2023, at 22:06:26 UTC, the desktop device desktop_02.corp.XXXX proceeded to perform more than 100 DRSGetNCChanges requests to the aforementioned domain controller. These commands, which are typically implemented over the RPC protocol on the DRSUAPI interface, are frequently utilized in Active Directory sync attacks to copy Active Directory information from domain controllers. Such activity, when not performed by new domain controllers to sync Active Directory contents, can indicate malicious domain or user enumeration, credential compromise or Active Directory enumeration.

Although the affected device made these requests to the previously noted domain controller, which was already compromised, such activity may have further enabled the compromise by allowing the threat actor to transfer these details to a more easily manageable device.

The device performing these DRSGetNCChanges requests would later be seen performing lateral movement activity and making connections to malicious endpoints.

Figure 3: Breach log highlighting the DRS operations performed by the corporate device to the destination domain controller. Such activity is rarely authorized for devices not tagged as administrative or as domain controllers.

Execution and Lateral Movement

At 23:09:53 UTC on April 30, 2023, the original domain server proceeded to make multiple uncommon WMI calls to a destination server on the same subnet (server01.corp.XXXX). Specifically, the device was observed making multiple RPC calls to IWbem endpoints on the server, which included login and ExecMethod (method execution) commands on the destination device. This destination device later proceeded to conduct additional beaconing activity to C2 endpoints and exfiltrate data.

Figure 4: Breach log for the domain controller performing WMI commands to the destination server during the lateral movement phase of the breach.

Similarly, beginning on May 1, 2023, at 00:11:09 UTC, the device desktop_02.corp.XXXX made multiple WMI requests to two additional devices, one server and one desktop, within the same subnet as the original domain controller. During this time, desktop_02.corp.XXXX  also utilized SMBv1, an outdated and typically non-compliant version communication protocol, to write the file rclone.exe to the same two destination devices. Rclone.exe, and its accompanying bat file, is a command-line tool developed by IT provider Rclone, to perform file management tasks. During this time, Darktrace also observed the device reading and deleting an unexpected numeric file on the ADMIN$ of the destination server, which may represent additional defense evasion techniques and tool staging.

Figure 5: Event log highlighting the writing of rclone.exe using the outdated SMBv1 communication protocol.
Figure 6: SMB logs indicating the reading and deletion of numeric string files on ADMIN$ shares of the destination devices during the time of the rclone.exe SMB writes. Such activity may be associated with tool staging and could indicate potential defense evasion techniques.

Given that the net loader sample analyzed by Symantec injects the backdoor into a WmiPrvSE.exe process, the use of WMI operations is not unexpected. Employment of WMI also correlates with the previously mentioned “living-off-the-land” tactics, as WMI services are commonly used for regular network and system administration purposes. Moreover, the staging of rclone.exe, a legitimate file management tool, for data exfiltration underscores attempts to blend into existing and expected network traffic and remain undetected on the customer’s network.

Data Exfiltration and Impact

Initial stages of data exfiltration actually began prior to some of the lateral movement events described above. On April 30, 2023, 23:09:47 the device server01.corp.XXXX, transferred nearly 11 GB of data to 173.44[.]141[.]47, as well as to the rare external IP address 170.130[.]55[.]77, which appears to have served as the main exfiltration destination during this compromise. Furthermore, the host made repeated connections to the same external IP associated with the initial suspicious beaconing activity (173.44[.]141[.]47) over SSL.

While the data exfiltration event unfolded, the device, server01.corp.XXXX, made multiple HTTP requests to 37.10[.]71[.]215, which featured URIs requesting the rclone.exe and rclone.bat files. This IP address was directly involved in the sample analyzed by Symantec. Furthermore, one of the devices that received the SMB file writes of rclone.exe and the WMI commands from desktop_02.corp.XXXX also performed SSL beaconing to endpoints associated with the compromise.

Between 01:20:45 - 03:31:41 UTC on May 1, 2023, a Darktrace detected a series of devices on the network performing a repeated pattern of activity, namely external connectivity followed by suspicious file downloads and external data transfer operations. Specifically, each affected device made multiple HTTP requests to 37.10[.]71[.]215 for rclone files. The devices proceeded to download the executable and/or binary files, and then transfer large amounts of data to the aforementioned endpoints, 170.130[.]55[.]77 and or 173-44-141-47[.]nip[.]io. Although the devices involved in data exfiltration utilized port 443 as a destination port, the connections actually used the SSH protocol. Darktrace recognized this behavior as unusual as port 443 is typically associated with the SSL protocol, while port 22 is reserved for SSH. Therefore, this activity may represent the threat actor’s attempts to remain undetected by security tools.

This unexpected use of SSH over port 443 also correlates with the descriptions of the new Sardonic backdoor according to threat researchers. Further beaconing and exfiltration activity was performed by an additional host one day later whereby the device made suspicious repeated connections to the aforementioned external hosts.

Figure 7: Connection details highlighting the use of port 443 for SSH connections during the exfiltration events.

In total, nine separate devices were involved in this pattern of activity. Five of these devices were labeled as ‘administrative’ devices according to their hostnames. Over the course of the entire exfiltration event, the attackers exfiltrated almost 61 GB of data from the organization’s environment.

Figure 8: Graph showing the levels of external data transfer from a breach device for one day on either side of the breach time. There is a large spike in such activity during the time of the breach that underscores the exfiltration events.

In addition to the individual anomaly detections by DETECT, Darktrace’s Cyber AI Analyst™ launched an autonomous investigation into the unusual behavior carried out by affected devices, connecting and collating multiple security events into one AI Analyst Incident. AI Analyst ensures that Darktrace can recognize and link the individual steps of a wider attack, rather than just identifying isolated incidents. While traditional security tools may mistake individual breaches as standalone activity, Darktrace’s AI allows it to provide unparalleled visibility over emerging attacks and their kill chains. Furthermore, Cyber AI Analyst’s instant autonomous investigations help to save customer security teams invaluable time in triaging incidents in comparison with human teams who would have to commit precious time and resources to conduct similar pattern analysis.

In this specific case, AI Analyst identified 44 separate security events from 18 different devices and was able to tie them together into one incident. The events that made up this AI Analyst Incident included:

  • Possible SSL Command and Control
  • Possible HTTP Command and Control
  • Unusual Repeated Connections
  • Suspicious Directory Replication ServiceActivity
  • Device / New or Uncommon WMI Activity
  • SMB Write of Suspicious File
  • Suspicious File Download
  • Unusual External Data Transfer
  • Unusual External Data Transfer to MultipleRelated Endpoints
Figure 9: Cyber AI Incident log highlighting multiple unusual anomalies and connecting them into one incident.

Had Darktrace RESPOND been enabled in autonomous response mode on the network of this prospective customer, it would have been able to take rapid mitigative action to block the malicious external connections used for C2 communication and subsequent data exfiltration, ideally halting the attack at this stage. As previously discussed, the limited network configuration of this trial customer meant that the encryption events unfortunately took place outside of Darktrace’s scope. When fully configured on a customer environment, Darktrace DETECT can identify such encryption attempts as soon as they occur. Darktrace RESPOND, in turn, would be able to immediately intervene by applying preventative actions like blocking internal connections that may represent file encryption, or limiting potentially compromised devices to a previously established pattern of life, ensuring they cannot carry out any suspicious activity.

Conclusion

Despite the limitations posed by the customer’s trial configuration, Darktrace demonstrated its ability to detect malicious activity associated with Syssphinx and track it across multiple stages of the kill chain.

Darktrace’s ability to identify the early stages of a compromise and various steps of the kill chain, highlights the necessity for machine learning-enabled, anomaly-based detection. In the face of threats such as Syssphinx, that exhibit the propensity to recast backdoor payloads and incorporate on “living-off-the-land” tactics, signatures and rules-based detection may not prove as effective. While Syssphinx and other threat groups will continue to adopt new tools, methods, and techniques, Darktrace’s Self-Learning AI is uniquely positioned to meet the challenge of such threats.

Appendix

DETECT Model Breaches Observed

•      Anomalous Server Activity / Anomalous External Activity from Critical Network Device

•      Anomalous Connection / Anomalous DRSGetNCChanges Operation

•      Device / New or Uncommon WMI Activity

•      Compliance / SMB Drive Write

•      Anomalous Connection / Data Sent to Rare Domain

•      Anomalous Connection / Uncommon 1 GiB Outbound

•      Unusual Activity / Unusual External Data Transfer

•      Unusual Activity / Unusual External Data to New Endpoints

•      Compliance / SSH to Rare External Destination

•      Anomalous Connection / Unusual SMB Version 1 Connectivity

•      Anomalous File / EXE from Rare External Location

•      Anomalous File / Script from Rare External Location

•      Compromise / Suspicious File and C2

•      Device / Initial Breach Chain Compromise

AI Analyst Incidents Observed

•      Possible SSL Command and Control

•      Possible HTTP Command and Control

•      Unusual Repeated Connections

•      Suspicious Directory Replication Service Activity

•      Device / New or Uncommon WMI Activity

•      SMB Write of Suspicious File

•      Suspicious File Download

•      Unusual External Data Transfer

•      Unusual External Data Transfer to Multiple Related Endpoints

IoCs

IoC - Type - Description

37.10[.]71[.]215 – IP – C2 + payload endpoint

173-44-141-47[.]nip[.]io – Hostname – C2 – payload

173.44[.]141[.]47 – IP – C2 + potential payload

170.130[.]55[.]77 – IP – Data exfiltration endpoint

Rclone.exe – Exe File – Common data tool

Rclone.bat – Script file – Common data tool

MITRE ATT&CK Mapping

Command and Control

T1071 - Application Layer Protocol

T1071.001 – Web protocols

T1573 – Encrypted channels

T1573.001 – Symmetric encryption

T1573.002 – Asymmetric encryption

T1571 – Non-standard port

T1105 – Ingress tool transfer

Execution

T1047 – Windows Management Instrumentation

Credential Access

T1003 – OS Credential Dumping

T1003.006 – DCSync

Lateral Movement

T1570 – Lateral Tool Transfer

T1021 - Remote Services

T1021.002 - SMB/Windows Admin Shares

T1021.006 – Windows Remote Management

Exfiltration

T1048 - Exfiltration Over Alternative Protocol

T1048.001 - Exfiltration Over Symmetric Encrypted Non-C2 Protocol

T1048.002 - Exfiltration Over Symmetric Encrypted Non-C2 Protocol

T1041 - Exfiltration Over C2 Channel

References

[1] https://cyberscoop.com/syssphinx-cybercrime-ransomware/

[2] https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/Syssphinx-FIN8-backdoor

[3] https://www.bleepingcomputer.com/news/security/fin8-deploys-alphv-ransomware-using-sardonic-malware-variant/

[4] https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/Syssphinx-FIN8-backdoor

[5] https://thehackernews.com/2023/07/fin8-group-using-modified-sardonic.html

[6] https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/Syssphinx-FIN8-backdoor

[7] https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/Syssphinx-FIN8-backdoor

[8] https://www.mandiant.com/resources/blog/windows-zero-day-payment-cards

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst

More in this series

No items found.

Blog

/

/

July 17, 2025

Introducing the AI Maturity Model for Cybersecurity

Default blog imageDefault blog image

AI adoption in cybersecurity: Beyond the hype

Security operations today face a paradox. On one hand, artificial intelligence (AI) promises sweeping transformation from automating routine tasks to augmenting threat detection and response. On the other hand, security leaders are under immense pressure to separate meaningful innovation from vendor hype.

To help CISOs and security teams navigate this landscape, we’ve developed the most in-depth and actionable AI Maturity Model in the industry. Built in collaboration with AI and cybersecurity experts, this framework provides a structured path to understanding, measuring, and advancing AI adoption across the security lifecycle.

Overview of AI maturity levels in cybersecurity

Why a maturity model? And why now?

In our conversations and research with security leaders, a recurring theme has emerged:

There’s no shortage of AI solutions, but there is a shortage of clarity and understanding of AI uses cases.

In fact, Gartner estimates that “by 2027, over 40% of Agentic AI projects will be canceled due to escalating costs, unclear business value, or inadequate risk controls. Teams are experimenting, but many aren’t seeing meaningful outcomes. The need for a standardized way to evaluate progress and make informed investments has never been greater.

That’s why we created the AI Security Maturity Model, a strategic framework that:

  • Defines five clear levels of AI maturity, from manual processes (L0) to full AI Delegation (L4)
  • Delineating the outcomes derived between Agentic GenAI and Specialized AI Agent Systems
  • Applies across core functions such as risk management, threat detection, alert triage, and incident response
  • Links AI maturity to real-world outcomes like reduced risk, improved efficiency, and scalable operations

[related-resource]

How is maturity assessed in this model?

The AI Maturity Model for Cybersecurity is grounded in operational insights from nearly 10,000 global deployments of Darktrace's Self-Learning AI and Cyber AI Analyst. Rather than relying on abstract theory or vendor benchmarks, the model reflects what security teams are actually doing, where AI is being adopted, how it's being used, and what outcomes it’s delivering.

This real-world foundation allows the model to offer a practical, experience-based view of AI maturity. It helps teams assess their current state and identify realistic next steps based on how organizations like theirs are evolving.

Why Darktrace?

AI has been central to Darktrace’s mission since its inception in 2013, not just as a feature, but the foundation. With over a decade of experience building and deploying AI in real-world security environments, we’ve learned where it works, where it doesn’t, and how to get the most value from it. This model reflects that insight, helping security leaders find the right path forward for their people, processes, and tools

Security teams today are asking big, important questions:

  • What should we actually use AI for?
  • How are other teams using it — and what’s working?
  • What are vendors offering, and what’s just hype?
  • Will AI ever replace people in the SOC?

These questions are valid, and they’re not always easy to answer. That’s why we created this model: to help security leaders move past buzzwords and build a clear, realistic plan for applying AI across the SOC.

The structure: From experimentation to autonomy

The model outlines five levels of maturity :

L0 – Manual Operations: Processes are mostly manual with limited automation of some tasks.

L1 – Automation Rules: Manually maintained or externally-sourced automation rules and logic are used wherever possible.

L2 – AI Assistance: AI assists research but is not trusted to make good decisions. This includes GenAI agents requiring manual oversight for errors.

L3 – AI Collaboration: Specialized cybersecurity AI agent systems  with business technology context are trusted with specific tasks and decisions. GenAI has limited uses where errors are acceptable.

L4 – AI Delegation: Specialized AI agent systems with far wider business operations and impact context perform most cybersecurity tasks and decisions independently, with only high-level oversight needed.

Each level reflects a shift, not only in technology, but in people and processes. As AI matures, analysts evolve from executors to strategic overseers.

Strategic benefits for security leaders

The maturity model isn’t just about technology adoption it’s about aligning AI investments with measurable operational outcomes. Here’s what it enables:

SOC fatigue is real, and AI can help

Most teams still struggle with alert volume, investigation delays, and reactive processes. AI adoption is inconsistent and often siloed. When integrated well, AI can make a meaningful difference in making security teams more effective

GenAI is error prone, requiring strong human oversight

While there is a lot of hype around GenAI agentic systems, teams will need to account for inaccuracy and hallucination in Agentic GenAI systems.

AI’s real value lies in progression

The biggest gains don’t come from isolated use cases, but from integrating AI across the lifecycle, from preparation through detection to containment and recovery.

Trust and oversight are key initially but evolves in later levels

Early-stage adoption keeps humans fully in control. By L3 and L4, AI systems act independently within defined bounds, freeing humans for strategic oversight.

People’s roles shift meaningfully

As AI matures, analyst roles consolidate and elevate from labor intensive task execution to high-value decision-making, focusing on critical, high business impact activities, improving processes and AI governance.

Outcome, not hype, defines maturity

AI maturity isn’t about tech presence, it’s about measurable impact on risk reduction, response time, and operational resilience.

[related-resource]

Outcomes across the AI Security Maturity Model

The Security Organization experiences an evolution of cybersecurity outcomes as teams progress from manual operations to AI delegation. Each level represents a step-change in efficiency, accuracy, and strategic value.

L0 – Manual Operations

At this stage, analysts manually handle triage, investigation, patching, and reporting manually using basic, non-automated tools. The result is reactive, labor-intensive operations where most alerts go uninvestigated and risk management remains inconsistent.

L1 – Automation Rules

At this stage, analysts manage rule-based automation tools like SOAR and XDR, which offer some efficiency gains but still require constant tuning. Operations remain constrained by human bandwidth and predefined workflows.

L2 – AI Assistance

At this stage, AI assists with research, summarization, and triage, reducing analyst workload but requiring close oversight due to potential errors. Detection improves, but trust in autonomous decision-making remains limited.

L3 – AI Collaboration

At this stage, AI performs full investigations and recommends actions, while analysts focus on high-risk decisions and refining detection strategies. Purpose-built agentic AI systems with business context are trusted with specific tasks, improving precision and prioritization.

L4 – AI Delegation

At this stage, Specialized AI Agent Systems performs most security tasks independently at machine speed, while human teams provide high-level strategic oversight. This means the highest time and effort commitment activities by the human security team is focused on proactive activities while AI handles routine cybersecurity tasks

Specialized AI Agent Systems operate with deep business context including impact context to drive fast, effective decisions.

Join the webinar

Get a look at the minds shaping this model by joining our upcoming webinar using this link. We’ll walk through real use cases, share lessons learned from the field, and show how security teams are navigating the path to operational AI safely, strategically, and successfully.

Continue reading
About the author

Blog

/

/

July 17, 2025

Forensics or Fauxrensics: Five Core Capabilities for Cloud Forensics and Incident Response

Default blog imageDefault blog image

The speed and scale at which new cloud resources can be spun up has resulted in uncontrolled deployments, misconfigurations, and security risks. It has had security teams racing to secure their business’ rapid migration from traditional on-premises environments to the cloud.

While many organizations have successfully extended their prevention and detection capabilities to the cloud, they are now experiencing another major gap: forensics and incident response.

Once something bad has been identified, understanding its true scope and impact is nearly impossible at times. The proliferation of cloud resources across a multitude of cloud providers, and the addition of container and serverless capabilities all add to the complexities. It’s clear that organizations need a better way to manage cloud incident response.

Security teams are looking to move past their homegrown solutions and open-source tools to incorporate real cloud forensics capabilities. However, with the increased buzz around cloud forensics, it can be challenging to decipher what is real cloud forensics, and what is “fauxrensics.”

This blog covers the five core capabilities that security teams should consider when evaluating a cloud forensics and incident response solution.

[related-resource]

1. Depth of data

There have been many conversations among the security community about whether cloud forensics is just log analysis. The reality, however, is that cloud forensics necessitates access to a robust dataset that extends far beyond traditional log data sources.

While logs provide valuable insights, a forensics investigation demands a deeper understanding derived from multiple data sources, including disk, network, and memory, within the cloud infrastructure. Full disk analysis complements log analysis, offering crucial context for identifying the root cause and scope of an incident.

For instance, when investigating an incident involving a Kubernetes cluster running on an EC2 instance, access to bash history can provide insights into the commands executed by attackers on the affected instance, which would not be available through cloud logs alone.

Having all of the evidence in one place is also a capability that can significantly streamline investigations, unifying your evidence be it disk images, memory captures or cloud logs, into a single timeline allowing security teams to reconstruct an attacks origin, path and impact far more easily. Multi–cloud environments also require platforms that can support aggregating data from many providers and services into one place. Doing this enables more holistic investigations and reduces security blind spots.

There is also the importance of collecting data from ephemeral resources in modern cloud and containerized environments. Critical evidence can be lost in seconds as resources are constantly spinning up and down, so having the ability to capture this data before its gone can be a huge advantage to security teams, rather than having to figure out what happened after the affected service is long gone.

darktrace / cloud, cado, cloud logs, ost, and memory information. value of cloud combined analysis

2. Chain of custody

Chain of custody is extremely critical in the context of legal proceedings and is an essential component of forensics and incident response. However, chain of custody in the cloud can be extremely complex with the number of people who have access and the rise of multi-cloud environments.

In the cloud, maintaining a reliable chain of custody becomes even more complex than it already is, due to having to account for multiple access points, service providers and third parties. Having automated evidence tracking is a must. It means that all actions are logged, from collection to storage to access. Automation also minimizes the chance of human error, reducing the risk of mistakes or gaps in evidence handling, especially in high pressure fast moving investigations.

The ability to preserve unaltered copies of forensic evidence in a secure manner is required to ensure integrity throughout an investigation. It is not just a technical concern, its a legal one, ensuring that your evidence handling is documented and time stamped allows it to stand up to court or regulatory review.

Real cloud forensics platforms should autonomously handle chain of custody in the background, recording and safeguarding evidence without human intervention.

3. Automated collection and isolation

When malicious activity is detected, the speed at which security teams can determine root cause and scope is essential to reducing Mean Time to Response (MTTR).

Automated forensic data collection and system isolation ensures that evidence is collected and compromised resources are isolated at the first sign of malicious activity. This can often be before an attacker has had the change to move latterly or cover their tracks. This enables security teams to prevent potential damage and spread while a deeper-dive forensics investigation takes place. This method also ensures critical incident evidence residing in ephemeral environments is preserved in the event it is needed for an investigation. This evidence may only exist for minutes, leaving no time for a human analyst to capture it.

Cloud forensics and incident response platforms should offer the ability to natively integrate with incident detection and alerting systems and/or built-in product automation rules to trigger evidence capture and resource isolation.

4. Ease of use

Security teams shouldn’t require deep cloud or incident response knowledge to perform forensic investigations of cloud resources. They already have enough on their plates.

While traditional forensics tools and approaches have made investigation and response extremely tedious and complex, modern forensics platforms prioritize usability at their core, and leverage automation to drastically simplify the end-to-end incident response process, even when an incident spans multiple Cloud Service Providers (CSPs).

Useability is a core requirement for any modern forensics platform. Security teams should not need to have indepth knowledge of every system and resource in a given estate. Workflows, automation and guidance should make it possible for an analyst to investigate whatever resource they need to.

Unifying the workflow across multiple clouds can also save security teams a huge amount of time and resources. Investigations can often span multiple CSP’s. A good security platform should provide a single place to search, correlate and analyze evidence across all environments.

Offering features such as cross cloud support, data enrichment, a single timeline view, saved search, and faceted search can help advanced analysts achieve greater efficiency, and novice analysts are able to participate in more complex investigations.

5. Incident preparedness

Incident response shouldn't just be reactive. Modern security teams need to regularly test their ability to acquire new evidence, triage assets and respond to threats across both new and existing resources, ensuring readiness even in the rapidly changing environments of the cloud.  Having the ability to continuously assess your incident response and forensics workflows enables you to rapidly improve your processes and identify and mitigate any gaps identified that could prevent the organization from being able to effectively respond to potential threats.

Real forensics platforms deliver features that enable security teams to prepare extensively and understand their shortcomings before they are in the heat of an incident. For example, cloud forensics platforms can provide the ability to:

  • Run readiness checks and see readiness trends over time
  • Identify and mitigate issues that could prevent rapid investigation and response
  • Ensure the correct logging, management agents, and other cloud-native tools are appropriately configured and operational
  • Ensure that data gathered during an investigation can be decrypted
  • Verify that permissions are aligned with best practices and are capable of supporting incident response efforts

Cloud forensics with Darktrace

Darktrace delivers a proactive approach to cyber resilience in a single cybersecurity platform, including cloud coverage. Darktrace / CLOUD is a real time Cloud Detection and Response (CDR) solution built with advanced AI to make cloud security accessible to all security teams and SOCs. By using multiple machine learning techniques, Darktrace brings unprecedented visibility, threat detection, investigation, and incident response to hybrid and multi-cloud environments.

Darktrace’s cloud offerings have been bolstered with the acquisition of Cado Security Ltd., which enables security teams to gain immediate access to forensic-level data in multi-cloud, container, serverless, SaaS, and on-premises environments.

[related-resource]

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI