Blog
/
/
December 2, 2019

Containing Cyber Threats with Autonomous Response

Autonomous response technology can stop cyber threats in their tracks. Discover how these solutions enable rapid threat containment.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
02
Dec 2019
“The next phase in our journey toward autonomous security is Autonomous Response decision-making.”

Lawrence Pingree, Research Vice President, Gartner

We’ve talked extensively on this blog about Autonomous Response: the AI-powered technology that, according to Gartner, represents a paradigm shift in cyber defense. As the first such Autonomous Response tool, Darktrace Antigena has already thwarted countless cyber-attacks, from a spear phishing campaign against a major city to an IoT smart locker attack targeting a popular amusement park. Antigena’s surgical intervention afforded their security teams the time they needed to investigate — stopping the clock in seconds by containing just the malicious behavior.

For all its benefits, however, Autonomous Response does have one drawback: it can make for slightly anticlimactic blog posts. In place of captivating, step-by-step descriptions of malware spreading throughout the enterprise and inflicting irrevocable damage, Antigena case studies end a mere moment after they start, with the “patient zero” employee completely unaware of the compromise that could have been.

In this particular case, however, Antigena was deployed in Human Confirmation Mode — a starter mode wherein the AI’s actions must first be approved by the security team. Absent such approval, the result was both an in-depth look at a sophisticated ransomware attack, as well as a remarkable illustration of how Antigena reacted in real time to every stage of that attack’s lifecycle:

Initial download

Patient zero here was a device that Darktrace detected downloading an executable file from a server with which no other devices on the network had ever communicated. Downloads like this one regularly bypass conventional endpoint tools, since they cannot be programmed in advance to catch the full range of unpredictable future threats. By contrast, because Darktrace AI learned the typical behavior of the company’s unique users and devices while ‘on the job’, it easily determined the download to be anomalous.

Figure 1: Darktrace alerts on the 100% rare connection and subsequent download — as it occurs.

Had Antigena been in Active Mode at the time, this would have marked the end of the blog post. By blocking all connections to the associated IP and port, Antigena would have instantly stopped the download — without otherwise impacting the device at all.

Figure 2: Antigena, in Human Confirmation Mode, recommends that it block the suspicious activity.

Command and control

Following the download, Darktrace observed the device making an HTTP GET request to the same rare endpoint. The continuation of this suspicious activity precipitated an escalation in Antigena’s recommended response, which would now have blocked all outgoing traffic from the breached device to prevent any infection from spreading.

Darktrace then detected the device making yet more unusual external connections to endpoints that, in many cases, had self-signed SSL certificates. Such self-signed certificates do not require verification by a trusted authority and are therefore frequently utilized by cyber-criminals. As a consequence, the outgoing connections from our infected device are likely the installed malware communicating with its command and control infrastructure, as Darktrace flagged below:

Figure 3: Darktrace alerts on the suspicious SSL certificates.

Figure 4: Antigena recommends taking action to block the connections in question.

Internal reconnaissance

Beyond the unusual external activity observed from the breached device, it also began to deviate significantly from its typical pattern of internal behavior. Indeed, Darktrace detected the device making over 160,000 failed internal connections on two key ports: Remote Desktop Protocol port 3389 and SMB port 445. This activity — known as network scanning — provides crucial reconnaissance, giving the attacker insight into the network structure, the services available on each device, and any potential vulnerabilities. Ports 3389 and 445 are especially common targets.

Figure 5: Darktrace tracks this ransomware attack at every step, though the security team does not mount a response in time.

The unusual external connections to self-signed SSL certificates, combined with the highly anomalous internal connectivity from the device, would have caused Antigena to escalate further. Alas, the attack proceeds.

Darktrace detected no further anomalous activity from patient zero for the next four days — perhaps a mechanism to remain under the radar. Yet this period of dormancy concluded when, once again, the device connected to a rare domain with a self-signed SSL certificate, likely reaching out to its command and control infrastructure for additional instructions.

Lateral movement

A day later — in a sign that suggests the prior scanning was somewhat fruitful — the infected device performed a large amount of unusual SMB activity consistent with the malware attempting to move laterally across the network. Darktrace picked up on the breached device sending unusual outgoing SMB writes to the remote administration tool PsExec to a total of 38 destination devices, 28 of which it compromised with a malicious file.

Darktrace recognized this activity as highly anomalous for the particular device, as it doesn’t usually communicate with these destination devices in this manner. Antigena would therefore would have surgically blocked the remote administration behavior by first containing the patient zero device to its normal ‘pattern of life’, and then by escalating to blocking all outgoing connections from the device if lateral movement had continued. Antigena’s escalation can be seen below: the first action is taken at 08:03, the second, more severe action at 08:43.

Figure 6: Darktrace repeatedly alerts on the unusual SMB traffic with high confidence — thanks to its evolving understanding of the device’s typical ‘pattern of life’.
Figure 7: Antigena again recommends immediate intervention, this time to impede lateral movement.

Encryption

Darktrace observed the first sign of the ransomware’s ultimate objective — encrypting files — on a different device, which also performed a large volume of unusual SMB activity. After accessing a multitude of SMB shares that it hadn’t accessed previously, it systematically appended those files with the .locked extension. When all was said and done, this encryption activity was seen from no less than 40 internal devices.

In Active Mode, Antigena Ransomware Block would have fully quarantined the devices — a culmination of increasingly severe Antigena actions from the initial infection of patient zero, to the command and control communication, to the internal reconnaissance, to the lateral movement, and finally to the file encryption.

Figure 8: Antigena Ransomware Block was fully armed and prepared to fight back against the infection.

The case for boring blog posts

No other approach to cyber security is able to track ransomware so comprehensively throughout its lifecycle, as programming legacy tools to flag all remote administration behavior, for instance, would inundate security teams with thousands of false positive alerts. Thus, only Darktrace’s understanding ‘self’ for each infected device can shed light on such activities — in the rare cases when they are anomalous.

Figure 9: An overview of Darktrace’s myriad warnings throughout the five-day attack with each colored dot representing a high-confidence alert.

However, intriguing though it may be to track this lifecycle to conclusion, the technology to write far less intriguing blog posts already exists and is already proven. Autonomous Response will render this kind of threat story a relic of the past, and for organizations with sensitive data and critical intellectual property to safeguard, the days of boring security blogs cannot come soon enough.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

/

September 23, 2025

It’s Time to Rethink Cloud Investigations

Default blog imageDefault blog image

Cloud Breaches Are Surging

Cloud adoption has revolutionized how businesses operate, offering speed, scalability, and flexibility. But for security teams, this transformation has introduced a new set of challenges, especially when it comes to incident response (IR) and forensic investigations.

Cloud-related breaches are skyrocketing – 82% of breaches now involve cloud-stored data (IBM Cost of a Data Breach, 2023). Yet incidents often go unnoticed for days: according to a 2025 report by Cybersecurity Insiders, of the 65% of organizations experienced a cloud-related incident in the past year, only 9% detected it within the first hour, and 62% took more than 24 hours to remediate it (Cybersecurity Insiders, Cloud Security Report 2025).

Despite the shift to cloud, many investigation practices remain rooted in legacy on-prem approaches. According to a recent report, 65% of organizations spend approximately 3-5 days longer when investigating an incident in the cloud vs. on premises.

Cloud investigations must evolve, or risk falling behind attackers who are already exploiting the cloud’s speed and complexity.

4 Reasons Cloud Investigations Are Broken

The cloud’s dynamic nature – with its ephemeral workloads and distributed architecture – has outpaced traditional incident response methods. What worked in static, on-prem environments simply doesn’t translate.

Here’s why:

  1. Ephemeral workloads
    Containers and serverless functions can spin up and vanish in minutes. Attackers know this as well – they’re exploiting short-lived assets for “hit-and-run” attacks, leaving almost no forensic footprint. If you’re relying on scheduled scans or manual evidence collection, you’re already too late.
  2. Fragmented tooling
    Each cloud provider has its own logs, APIs, and investigation workflows. In addition, not all logs are enabled by default, cloud providers typically limit the scope of their logs (both in terms of what data they collect and how long they retain it), and some logs are only available through undocumented APIs. This creates siloed views of attacker activity, making it difficult to piece together a coherent timeline. Now layer in SaaS apps, Kubernetes clusters, and shadow IT — suddenly you’re stitching together 20+ tools just to find out what happened. Analysts call it the ‘swivel-chair Olympics,’ and it’s burning hours they don’t have.
  3. SOC overload
    Analysts spend the bulk of their time manually gathering evidence and correlating logs rather than responding to threats. This slows down investigations and increases burnout. SOC teams are drowning in noise; they receive thousands of alerts a day, the majority of which never get touched. False positives eat hundreds of hours a month, and consequently burnout is rife.  
  4. Cost of delay
    The longer an investigation takes, the higher its cost. Breaches contained in under 200 days save an average of over $1M compared to those that linger (IBM Cost of a Data Breach 2025).

These challenges create a dangerous gap for threat actors to exploit. By the time evidence is collected, attackers may have already accessed or exfiltrated data, or entrenched themselves deeper into your environment.

What’s Needed: A New Approach to Cloud Investigations

It’s time to ditch the manual, reactive grind and embrace investigations that are automated, proactive, and built for the world you actually defend. Here’s what the next generation of cloud forensics must deliver:

  • Automated evidence acquisition
    Capture forensic-level data the moment a threat is detected and before assets disappear.
  • Unified multi-cloud visibility
    Stitch together logs, timelines, and context across AWS, Azure, GCP, and hybrid environments into a single unified view of the investigation.
  • Accelerated investigation workflows
    Reduce time-to-insight from hours or days to minutes with automated analysis of forensic data, enabling faster containment and recovery.
  • Empowered SOC teams
    Fully contextualised data and collaboration workflows between teams in the SOC ensure seamless handover, freeing up analysts from manual collection tasks so they can focus on what matters: analysis and response.

Attackers are already leveraging the cloud’s agility. Defenders must do the same — adopting solutions that match the speed and scale of modern infrastructure.

Cloud Changed Everything. It’s Time to Change Investigations.  

The cloud fundamentally reshaped how businesses operate. It’s time for security teams to rethink how they investigate threats.

Forensics can no longer be slow, manual, and reactive. It must be instant, automated, and cloud-first — designed to meet the demands of ephemeral infrastructure and multi-cloud complexity.

The future of incident response isn’t just faster. It’s smarter, more scalable, and built for the environments we defend today, not those of ten years ago.  

On October 9th, Darktrace is revealing the next big thing in cloud security. Don’t miss it – sign up for the webinar.

darktrace live event launch
Continue reading
About the author
Kellie Regan
Director, Product Marketing - Cloud Security

Blog

/

/

September 22, 2025

Understanding the Canadian Critical Cyber Systems Protection Act

Default blog imageDefault blog image

Introduction: The Canadian Critical Cyber Systems Protection Act

On 18 June 2025, the Canadian federal Government introduced Bill C-8 which, if adopted following completion of the legislative process, will enact the Critical Cyber Systems Protection Act (CCSPA) and give Canada its first federal, cross-sector and legally binding cybersecurity regime for designated critical infrastructure providers. As of August 2025, the Bill has completed first reading and stands at second reading in the Canadian House of Commons.

Political context

The measure revives most of the stalled 2022 Bill C-26 “An Act Respecting Cyber Security” which “died on Paper” when Parliament was prorogued in January 2025, in the wake of former Prime Minister Justin Trudeau’s resignation.

The new government, led by Mark Carney since March 2025, has re-tabled the package with the same two-part structure: (1) amendments to the Telecommunications Act that enable security directions to telecoms; and (2) a new CCSPA setting out mandatory cybersecurity duties for designated operators. This blog focuses on the latter.

If enacted, Canada will join fellow Five Eyes partners such as the United Kingdom and Australia, which already impose statutory cyber-security duties on operators of critical national infrastructure.

The case for new cybersecurity legislation in Canada

The Canadian cyber threat landscape has expanded. The country's national cyber authority, the Canadian Centre for Cybersecurity (Cyber Centre), recently assessed that the number of cyber incidents has “sharply increased” in the last two years, as has the severity of those incidents, with essential services providers among the targets. Likewise, in its 2025-2026 National Cyber Threat Assessment, the Cyber Centre warned that AI technologies are “amplifying cyberspace threats” by lowering barriers to entry, improving the speed and sophistication of social-engineering attacks and enabling more precise operations.

This context mirrors what we are seeing globally: adversaries, including state actors, are taking advantage of the availability and sophistication of AI tools, which they have leverage to amplify the effectiveness of their operations. In this increasingly complex landscape, regulation must keep pace and evolve in step with the risk.

What the Canadian Critical Cyber Systems Protection Act aims to achieve

  • If enacted, the CCSPA will apply to operators in federally regulated critical infrastructure sectors which are vital to national security and public safety, as further defined in “Scope” below (the “Regulated Entities”), to adopt and comply with a minimum standard of cybersecurity duties (further described below)  which align with those its Five Eyes counterparts are already adhering to.

Who does the CCSPA apply to

The CCSPA would apply to designated operators that deliver services or systems within federal jurisdiction in the following priority areas:

  • telecommunications services
  • interprovincial or international pipeline and power line systems, nuclear energy systems, transportation systems
  • banking and clearing  
  • settlement systems

The CCSPA would also grant the Governor in Council (Federal Cabinet) with powers to add or remove entities in scope via regulation.

Scope of the CCSPA

The CCSPA introduces two key instruments:

First, it strengthens cyber threat information sharing between responsible ministers, sector regulators, and the Communications Security Establishment (through the Cyber Centre).

Second, it empowers the Governor in Council (GIC) to issue Cyber Security Directions (CSDs) - binding orders requiring a designated operator to implement specified measures to protect a critical cyber system within defined timeframes.

CSDs may be tailored to an individual operator or applied to a class of operators and can address technology, process, or supplier risks. To safeguard security and commercial confidentiality, the CCSPA restricts disclosure of the existence or content of a CSD except as necessary to carry it out.

Locating decision-making with the GIC ensures that CSDs are made with a cross-government view that weighs national security, economic priorities and international agreement.

New obligations for designated providers

The CCSPA would impose key cybersecurity compliance and obligations on designated providers. As it stands, this includes:

  1. Establishing and maintaining cybersecurity programs: these will need to be comprehensive, proportionate and developed proactively. Once implemented, they will need to be continuously reviewed
  2. Mitigating supply chain risks: Regulated Entities will be required to assess their third-party products and services by conducting a supply chain analysis, and take active steps to mitigate any identified risks
  3. Reporting incidents:  Regulated Entities will need to be more transparent with their reporting, by making the Communications Security Establishment (CSE) aware of any incident which has, or could potentially have, an impact on a critical system. The reports must be made within specific timelines, but in any event within no more than 72 hours;
  4. Compliance with cybersecurity directions:  the government will, under the CCSPA, have the authority to issue cybersecurity directives in an effort to remain responsive to emerging threats, which Regulated Entities will be required to follow once issued
  5. Record keeping: this shouldn’t be a surprise to many of those Regulated Entities which fall in scope, which are already likely to be subject to record keeping requirements. Regulated Entities should expect to be maintaining records and conducting audits of their systems and processes against the requirements of the CCSPA

It should be noted, however, that this may be subject to change, so Regulated Entities should keep an eye on the progress of the Bill as it makes its way through parliament.

Enforcement of the Act would be carried out by sector-specific regulators identified in the Act such as the Office of the Superintendent of Financial Institutions, Minister of Transport, Canada Energy Regulator, Canadian Nuclear Safety Commission and the Ministry of Industry.

What are the penalties for CCSPA non-compliance?

When assessing the penalties associated with non-compliance with the requirements of the CCSPA, it is clear that such non-compliance will be taken seriously, and the severity of the penalties follows the trend of those applied by the European Union to key pieces of EU legislation. The “administrative monetary penalties” (AMPs) set by regulation could see fines being applied of up to C$1 million for individuals and up to C$15 million for organizations.

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI