ブログ
/
/
July 17, 2024

What you need to know about the new SEC Cybersecurity rules

In July 2023, the U.S. Securities and Exchange Commission (SEC) adopted new rules concerning cybersecurity incidents and disclosures. This blog describes the new rules and demonstrates how Darktrace can help organizations achieve compliance with these standards.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Kendra Gonzalez Duran
Principal Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
17
Jul 2024

What is new in 2023 to SEC cybersecurity rules?

Form 8-K Item 1.05: Requiring the timely disclosure of material cybersecurity incidents.

Regulation S-K item 106: requiring registrants’ annual reports on Form 10-K to address cybersecurity risk management, strategy, and governance processes.

Comparable disclosures are required for reporting foreign private issuers on Forms 6-K and 20-F respectively.

What is Form 8-K Item 1.05 SEC cybersecurity rules?

Form 8-K Item 1.05 requires the following to be reported within four business days from when an incident is determined to be “material” (1), unless extensions are granted by the SEC under certain qualifying conditions:

“If the registrant experiences a cybersecurity incident that is determined by the registrant to be material, describe the material aspects of the nature, scope, and timing of the incident, and the material impact or reasonably likely material impact on the registrant, including its financial condition and results of operations.” (2, 3)

How does the SEC define cybersecurity incident?

Cybersecurity incident defined by the SEC means an unauthorized occurrence, or a series of related unauthorized occurrences, on or conducted through a registrant’s information systems that jeopardizes the confidentiality, integrity, or availability of a registrant’s information systems or any information residing therein. (4)

How can Darktrace assist in the process of disclosing incidents to the SEC?

Accelerate reporting

Darktrace’s Cyber AI Analyst generates automated reports that synthesize discrete data points potentially indicative of cybersecurity threats, forming reports that provide an overview of the evolution and impact of a threat.

Thus, when a potential threat is identified by Darktrace, AI Analyst can quickly compile information that organizations might include in their disclosure of an occurrence they determined to be material, including the following: incident timelines, incident events, incident summary, related model breaches, investigation process (i.e., how Darktrace’s AI conducted the investigation), linked incident events, and incident details. The figure below illustrates how Darktrace compiles and presents incident information and insights in the UI.

Overview of information provided in an ‘AI Analyst Report’ that could be relevant to registrants reporting a material cybersecurity incident to the SEC
Figure 1: Overview of information provided in an ‘AI Analyst Report’ that could be relevant to registrants reporting a material cybersecurity incident to the SEC

It should be noted that Instruction 4 to the new Form 8-K Item 1.05 specifies the “registrant need not disclose specific or technical information about its planned response to the incident or its cybersecurity systems, related networks and devices, or potential system vulnerabilities in such detail as would impede the registrant’s response or remediation of the incident” (5).

As such, the incident report generated by Darktrace may provide more information, including technical details, than is needed for the 8-K disclosure. In general, users should take appropriate measures to ensure that the information they provide in SEC reports meets the requirements outlined by the relevant regulations. Darktrace cannot recommend that an incident should be reported, nor report an incident itself.

Determine if a cybersecurity incident is material

Item 1.05 requires registrants to determine for themselves whether cybersecurity incidents qualify as ‘material’. This involves considerations such as ‘the nature scope and timing of the incident, and the material impact or reasonably likely material impact on the registrant, including its financial condition and results of operations.’

While it is up to the registrant to determine, consistent with existing legal standards, the materiality of an incident, Darktrace’s solution can provide relevant information which might aid in this evaluation. Darktrace’s Threat Visualizer user interface provides a 3-D visualization of an organization’s digital environment, allowing users to assess the likely degree to which an attack may have spread throughout their digital environment. Darktrace Cyber AI Analyst identifies connections among discrete occurrences of threatening activity, which can help registrants quickly assess the ‘scope and timing of an incident'.

Furthermore, in order to establish materiality it would be useful to understand how an attack might extend across recipients and environments. In the image below, Darktrace/Email identifies how a user was impacted across different platforms. In this example, Darktrace/Email identified an attacker that deployed a dual channel social engineering attack via both email and a SaaS platform in an effort to acquire login credentials. In this case, the attacker useding a legitimate SharePoint link that only reveals itself to be malicious upon click. Once the attacker gained the credentials, it proceeded to change email rules to obfuscate its activity.

Darktrace/Email presents this information in one location, making such investigations easier for the end user.

Darktrace/Email indicating a threat across SaaS and email
Figure 2: Darktrace/Email indicating a threat across SaaS and email

What is regulation S-K item 106 of the SEC cybersecurity rules?

The new rules add Item 106 to Regulation S-K requiring registrants to disclose certain information regarding their risk management, strategy, and governance relating to cybersecurity in their annual reports on Form 10-K. The new rules add Item 16K to Form 20-F to require comparable disclosure by [foreign private issuers] in their annual reports on Form 20-F. (6)

SEC cybersecurity rules: Risk management

Specifically, with respect to risk management, Item 106(b) and Item 16K(b) require registrants to describe their processes, if any, for assessing, identifying, and managing material risks from cybersecurity threats, as well as whether any risks from cybersecurity threats, including as a result of any previous cybersecurity incidents, have materially affected or are reasonably likely to materially affect them. The new rules include a non-exclusive list of disclosure items registrants should provide based on their facts and circumstances. (6)

SEC cybersecurity rules: Governance

With respect to governance, Item 106 and Item 16K require registrants to describe the board of directors’ oversight of risks from cybersecurity threats (including identifying any board committee or subcommittee responsible for such oversight) and management’s role in assessing and managing material risks from cybersecurity threats. (6)

How can Darktrace solutions aid in disclosing their risk management, strategy, and governance related to cybersecurity?

Impact scores

Darktrace End-to-End (E2E) leverages AI to understand the complex relationships across users and devices to model possible attack paths, giving security teams a contextual understanding of risk across their digital environments beyond isolated CVEs or CVSS scores. Additionally, teams can prioritize risk management actions to increase their cyber resilience through the E2E Advisory dashboard.

Attack paths consider:

  • Potential damages: Both the potential consequences if a given device was compromised and its immediate implications on other devices.
  • Exposure: Devices' level of interactivity and accessibility. For example, how many emails does a user get via mailing lists and from what kind of sources?
  • Impact: Where a user or asset sits in terms of the IT or business hierarchy and how they communicate with each other. Darktrace can simulate a range of possible outcomes for an uncertain event.
  • Weakness: A device’s patch latency and difficulty, a composite metric that looks at attacker MITRE methods and our own scores to determine how hard each stage of compromise is to achieve.

Because the SEC cybersecurity rules require “oversight of risks from cybersecurity threats” and “management’s role in assessing and managing material risks from cybersecurity threats” (6), the scores generated by Darktrace E2E can aid end-user’s ability to identify risks facing their organization and assign responsibilities to address those risks.

E2E attack paths leverage a deep understanding of a customer’ digital environment and highlight potential attack routes that an attacker could leverage to reach critical assets or entities. Difficulty scores (see Figure 5) allow security teams to measure potential damage, exposure, and impact of an attack on a specific asset or entity.

An example of an attack path in a digital environment
Figure 3: An example of an attack path in a digital environment

Automatic executive threat reports

Darktrace’s solution automatically produces Executive Threat Reports that present a simple visual overview of model breaches (i.e., indicators of unusual and threatening behaviors) and activity in the network environment. Reports can be customized to include extra details or restricted to high level information.

These reports can be generated on a weekly, quarterly, and yearly basis, and can be documented by registrants in relation to Item 106(b) to document parts of their efforts toward assessing, identifying, and managing material risks from cybersecurity threats.

Moreover, Cyber AI Analyst incident reports (described above) can be leveraged to document key details concerning significant previous incidents identified by the Darktrace solution that the registrant determined to be ‘material’.

While the disclosures required by Item 106(c) relate to the governance processes by which the board of directors, the management, and other responsible bodies within an organization oversee risks resulting from cybersecurity threats, the information provided by Darktrace’s Executive Threat Reports and Cyber AI Analyst incident reports can also help relevant stakeholders communicate more effectively regarding the threat landscape and previous incidents.

DISCLAIMER

The material above is provided for informational purposes only. This summary does not constitute legal or compliance advice, recommendations, or guidance. Darktrace encourages you to verify the contents of this summary with your own advisors.

References

  1. Note that the rule does not set forth any specific timeline between the incident and the materiality determination, but the materiality determination should be made without unreasonable delay.
  2. https://www.sec.gov/files/form8-k.pdf
  3. https://www.sec.gov/news/press-release/2023-139
  4. https://www.ecfr.gov/current/title-17/chapter-II/part-229
  5. https://www.sec.gov/files/form8-k.pdf
  6. https://www.sec.gov/corpfin/secg-cybersecurity
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Kendra Gonzalez Duran
Principal Analyst

More in this series

No items found.

Blog

/

AI

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

Default blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community

Blog

/

Email

/

December 22, 2025

Why Organizations are Moving to Label-free, Behavioral DLP for Outbound Email

Default blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ