ブログ
/
/
July 17, 2024

What you need to know about the new SEC Cybersecurity rules

In July 2023, the U.S. Securities and Exchange Commission (SEC) adopted new rules concerning cybersecurity incidents and disclosures. This blog describes the new rules and demonstrates how Darktrace can help organizations achieve compliance with these standards.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Kendra Gonzalez Duran
Principal Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
17
Jul 2024

What is new in 2023 to SEC cybersecurity rules?

Form 8-K Item 1.05: Requiring the timely disclosure of material cybersecurity incidents.

Regulation S-K item 106: requiring registrants’ annual reports on Form 10-K to address cybersecurity risk management, strategy, and governance processes.

Comparable disclosures are required for reporting foreign private issuers on Forms 6-K and 20-F respectively.

What is Form 8-K Item 1.05 SEC cybersecurity rules?

Form 8-K Item 1.05 requires the following to be reported within four business days from when an incident is determined to be “material” (1), unless extensions are granted by the SEC under certain qualifying conditions:

“If the registrant experiences a cybersecurity incident that is determined by the registrant to be material, describe the material aspects of the nature, scope, and timing of the incident, and the material impact or reasonably likely material impact on the registrant, including its financial condition and results of operations.” (2, 3)

How does the SEC define cybersecurity incident?

Cybersecurity incident defined by the SEC means an unauthorized occurrence, or a series of related unauthorized occurrences, on or conducted through a registrant’s information systems that jeopardizes the confidentiality, integrity, or availability of a registrant’s information systems or any information residing therein. (4)

How can Darktrace assist in the process of disclosing incidents to the SEC?

Accelerate reporting

Darktrace’s Cyber AI Analyst generates automated reports that synthesize discrete data points potentially indicative of cybersecurity threats, forming reports that provide an overview of the evolution and impact of a threat.

Thus, when a potential threat is identified by Darktrace, AI Analyst can quickly compile information that organizations might include in their disclosure of an occurrence they determined to be material, including the following: incident timelines, incident events, incident summary, related model breaches, investigation process (i.e., how Darktrace’s AI conducted the investigation), linked incident events, and incident details. The figure below illustrates how Darktrace compiles and presents incident information and insights in the UI.

Overview of information provided in an ‘AI Analyst Report’ that could be relevant to registrants reporting a material cybersecurity incident to the SEC
Figure 1: Overview of information provided in an ‘AI Analyst Report’ that could be relevant to registrants reporting a material cybersecurity incident to the SEC

It should be noted that Instruction 4 to the new Form 8-K Item 1.05 specifies the “registrant need not disclose specific or technical information about its planned response to the incident or its cybersecurity systems, related networks and devices, or potential system vulnerabilities in such detail as would impede the registrant’s response or remediation of the incident” (5).

As such, the incident report generated by Darktrace may provide more information, including technical details, than is needed for the 8-K disclosure. In general, users should take appropriate measures to ensure that the information they provide in SEC reports meets the requirements outlined by the relevant regulations. Darktrace cannot recommend that an incident should be reported, nor report an incident itself.

Determine if a cybersecurity incident is material

Item 1.05 requires registrants to determine for themselves whether cybersecurity incidents qualify as ‘material’. This involves considerations such as ‘the nature scope and timing of the incident, and the material impact or reasonably likely material impact on the registrant, including its financial condition and results of operations.’

While it is up to the registrant to determine, consistent with existing legal standards, the materiality of an incident, Darktrace’s solution can provide relevant information which might aid in this evaluation. Darktrace’s Threat Visualizer user interface provides a 3-D visualization of an organization’s digital environment, allowing users to assess the likely degree to which an attack may have spread throughout their digital environment. Darktrace Cyber AI Analyst identifies connections among discrete occurrences of threatening activity, which can help registrants quickly assess the ‘scope and timing of an incident'.

Furthermore, in order to establish materiality it would be useful to understand how an attack might extend across recipients and environments. In the image below, Darktrace/Email identifies how a user was impacted across different platforms. In this example, Darktrace/Email identified an attacker that deployed a dual channel social engineering attack via both email and a SaaS platform in an effort to acquire login credentials. In this case, the attacker useding a legitimate SharePoint link that only reveals itself to be malicious upon click. Once the attacker gained the credentials, it proceeded to change email rules to obfuscate its activity.

Darktrace/Email presents this information in one location, making such investigations easier for the end user.

Darktrace/Email indicating a threat across SaaS and email
Figure 2: Darktrace/Email indicating a threat across SaaS and email

What is regulation S-K item 106 of the SEC cybersecurity rules?

The new rules add Item 106 to Regulation S-K requiring registrants to disclose certain information regarding their risk management, strategy, and governance relating to cybersecurity in their annual reports on Form 10-K. The new rules add Item 16K to Form 20-F to require comparable disclosure by [foreign private issuers] in their annual reports on Form 20-F. (6)

SEC cybersecurity rules: Risk management

Specifically, with respect to risk management, Item 106(b) and Item 16K(b) require registrants to describe their processes, if any, for assessing, identifying, and managing material risks from cybersecurity threats, as well as whether any risks from cybersecurity threats, including as a result of any previous cybersecurity incidents, have materially affected or are reasonably likely to materially affect them. The new rules include a non-exclusive list of disclosure items registrants should provide based on their facts and circumstances. (6)

SEC cybersecurity rules: Governance

With respect to governance, Item 106 and Item 16K require registrants to describe the board of directors’ oversight of risks from cybersecurity threats (including identifying any board committee or subcommittee responsible for such oversight) and management’s role in assessing and managing material risks from cybersecurity threats. (6)

How can Darktrace solutions aid in disclosing their risk management, strategy, and governance related to cybersecurity?

Impact scores

Darktrace End-to-End (E2E) leverages AI to understand the complex relationships across users and devices to model possible attack paths, giving security teams a contextual understanding of risk across their digital environments beyond isolated CVEs or CVSS scores. Additionally, teams can prioritize risk management actions to increase their cyber resilience through the E2E Advisory dashboard.

Attack paths consider:

  • Potential damages: Both the potential consequences if a given device was compromised and its immediate implications on other devices.
  • Exposure: Devices' level of interactivity and accessibility. For example, how many emails does a user get via mailing lists and from what kind of sources?
  • Impact: Where a user or asset sits in terms of the IT or business hierarchy and how they communicate with each other. Darktrace can simulate a range of possible outcomes for an uncertain event.
  • Weakness: A device’s patch latency and difficulty, a composite metric that looks at attacker MITRE methods and our own scores to determine how hard each stage of compromise is to achieve.

Because the SEC cybersecurity rules require “oversight of risks from cybersecurity threats” and “management’s role in assessing and managing material risks from cybersecurity threats” (6), the scores generated by Darktrace E2E can aid end-user’s ability to identify risks facing their organization and assign responsibilities to address those risks.

E2E attack paths leverage a deep understanding of a customer’ digital environment and highlight potential attack routes that an attacker could leverage to reach critical assets or entities. Difficulty scores (see Figure 5) allow security teams to measure potential damage, exposure, and impact of an attack on a specific asset or entity.

An example of an attack path in a digital environment
Figure 3: An example of an attack path in a digital environment

Automatic executive threat reports

Darktrace’s solution automatically produces Executive Threat Reports that present a simple visual overview of model breaches (i.e., indicators of unusual and threatening behaviors) and activity in the network environment. Reports can be customized to include extra details or restricted to high level information.

These reports can be generated on a weekly, quarterly, and yearly basis, and can be documented by registrants in relation to Item 106(b) to document parts of their efforts toward assessing, identifying, and managing material risks from cybersecurity threats.

Moreover, Cyber AI Analyst incident reports (described above) can be leveraged to document key details concerning significant previous incidents identified by the Darktrace solution that the registrant determined to be ‘material’.

While the disclosures required by Item 106(c) relate to the governance processes by which the board of directors, the management, and other responsible bodies within an organization oversee risks resulting from cybersecurity threats, the information provided by Darktrace’s Executive Threat Reports and Cyber AI Analyst incident reports can also help relevant stakeholders communicate more effectively regarding the threat landscape and previous incidents.

DISCLAIMER

The material above is provided for informational purposes only. This summary does not constitute legal or compliance advice, recommendations, or guidance. Darktrace encourages you to verify the contents of this summary with your own advisors.

References

  1. Note that the rule does not set forth any specific timeline between the incident and the materiality determination, but the materiality determination should be made without unreasonable delay.
  2. https://www.sec.gov/files/form8-k.pdf
  3. https://www.sec.gov/news/press-release/2023-139
  4. https://www.ecfr.gov/current/title-17/chapter-II/part-229
  5. https://www.sec.gov/files/form8-k.pdf
  6. https://www.sec.gov/corpfin/secg-cybersecurity
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Kendra Gonzalez Duran
Principal Analyst

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Default blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Default blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ