Blog
/
/
March 20, 2019

The Invisible Threat: How AI Catches the Ursnif Trojan

The cyber AI approach successfully detected the Ursnif infections even though the new variant of this malware was unknown to security vendors at the time.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
20
Mar 2019

Over the past few months, I’ve analyzed some of the world’s stealthiest trojan attacks like Emotet, which employ deception to bypass traditional security tools that rely on rules and signatures. Guest contributor Keith Siepel also explained how cyber AI defenses managed to catch a zero-day trojan on his firm’s network for which no such rules or signatures yet exist. Indeed, with the incidence of banking trojans having increased by 239% among our customer base last year, it appears that this kind of subterfuge is the new normal.

However, one particularly sophisticated trojan, Ursnif, takes deception a step further evidence of which we are still seeing emerge. Rather than writing executable files that contain malicious code, some of its variants instead exploit vulnerabilities inherent to a user’s own applications, essentially turning the victim’s computer against them. The result of this increasingly common technique is that — once the victim has been tricked into clicking a malicious link or duped into opening an attachment via a phishing email — Ursnif begins to ‘live off the land’, blending into the victim’s environment. And by exploiting Microsoft Office and Windows features, such as document macros, PsExec, and PowerShell scripts, Ursnif can execute commands directly from the computer’s RAM.

One of the most prevalent and destructive strains of the Gozi banking malware, Ursnif was recently placed at the center of a new campaign that saw it dramatically expand its functionality. Originally created to infect hosts with spyware in order to steal sensitive banking information and user credentials, it can now also deploy advanced ransomware like GandCrab. These new functions are aided by the elusive trojan’s aforementioned file-less capabilities, which render it invisible to many security tools and allow it to hide in plain sight within legitimate, albeit corrupted applications. Shining a light on Ursnif therefore requires AI tools that can learn to spot when these applications act abnormally:

Cyber AI detects Ursnif on multiple client networks

First campaign: February 4, 2019

Darktrace detected the initial Ursnif compromise on a customer’s network when it caught several devices connecting to a highly unusual endpoint and subsequently downloading masqueraded files, causing Darktrace’s “Anomalous File / Masqueraded File Transfer” model to breach. Such files are often masqueraded as other file types not only to bypass traditional security measures but also to deceive users — for instance, with the intention of tricking a user into executing a file received in a malicious email by disguising it as a document.

As it happens, this Ursnif variant was a zero-day at the time Darktrace detected it, meaning that its files were unknown to antivirus vendors. But while the never-before-seen files bypassed the customer’s endpoint tools, Darktrace AI leveraged its understanding of the unique ‘pattern of life’ for every user and device in the customer’s network to flag these file downloads as threatening anomalies — without relying on signatures.

A sample of the masqueraded files initially downloaded:

File: xtex13.gas
File MIME type: application/x-dosexec
Size: 549.38 KB
Connection UID: C8SlueG1mT7VdcJ00

File: zyteb17.gas
File MIME type: application/x-dosexec
SHA-1 hash: 4ed60393575d6b47bd82eeb03629bdcb8876a73f
Size: 276.48 KB

File: File: adnaz2.gas
File MIME type: application/x-dosexec
Size: 380.93 KB
Connection UID: CmPOzP1AC4tzuuuW00

A sample of the endpoints detected:

kieacsangelita[.]city · 209.141.60[.]214
muikarellep[.]band · 46.29.167[.]73
cjasminedison[.]com · 185.120.58[.]13

Following the initial suspicious downloads, the compromised devices were further observed making regular connections to multiple rare destinations not previously seen on the affected network in a pattern of beaconing connectivity. In some cases, Darktrace marked these external destinations as suspicious when it recognized the hostnames they queried as algorithm-generated domains. High volumes of DNS requests for such domains is a common characteristic of malware infections, which use this tactic to maintain communication with C2 servers in spite of domain black-listing. In other cases, the endpoints were deemed suspicious because of their use of self-signed SSL certificates, which cyber-criminals often use because they do not require verification by a trusted authority.

In fact, the large volume of anomalous connections commonly triggered a number of Darktrace’s behavioral models, including:

Compromise / DGA Beacon
Anomalous Connection / Suspicious Self-Signed SSL
Compromise / High Volume of Connections with Beacon Score
Compromise / Beaconing Activity To Rare External Endpoint

Beaconing is a method of communication frequently seen when a compromised device attempts to relay information to its control infrastructure in order to receive further instructions. This behavior is characterized by persistent external connections to one or multiple endpoints, a pattern that was repeatedly observed for those devices that had previously downloaded malicious files from the endpoints later associated with the Ursnif campaign. While beaconing behavior to unusual destinations is not necessarily always indicative of infection, Darktrace AI concluded that, in combination with the suspicious file downloads, this type of activity represented a clear indication of compromise.

Figure 1: A device event log that shows the device had connected to internal mail servers shortly before downloading the malicious files.

Lateral movement and file-less capabilities

In the wake of the initial compromise, Darktrace AI also detected Ursnif’s lateral movement and file-less capabilities in real time. In the case of one infected device, an “Anomalous Connection / High Volume of New Service Control” model breach was triggered following the aforementioned suspicious activities. The device in question was flagged after making anomalous SMB connections to at least 47 other internal devices, and after accessing file shares which it had not previously connected. Subsequently, the device was observed writing to the other devices’ service control pipe – a channel used for the remote control of services. The anomalous use of these remote-control channels represent compelling examples of how Ursnif leverages its file-less capabilities to facilitate lateral movement.

Figure 2: Volume of SMB writes made to the service control pipe on internal devices by one of the infected devices, as shown on the Darktrace UI.

Although network administrators often use remote control channels for legitimate purposes, Darktrace AI considered this particular usage highly suspicious, particularly as both devices had previously breached a number of behavioral models as a result of infection.

Second campaign: March 18, 2019

A second Ursnif campaign was detected just this week. At the time of detection, no OSINT was available for the C2 servers nor the malware samples.

On a US manufacturer’s network, the initial malware download took place from: xqzuua1594[.]com/loq91/10x.php?l=mow1.jad hosted on IP 94.154.10[.]62.
Every single malware download is unique. This is indicating auto-patching or a malware factory working in the background.
Darktrace immediately identified this as another Anomalous File / Masqueraded File Transfer.

Directly after this, initial C2 was observed with the following parameters:

HTTP GET to: vwdlpknpsierra[.]email
Destination IP: 162.248.225[.]14
URI: /images/CKicJCsNNNfaJwX6CJ/0Ohp3OUfj/pI_2FszUK7ybqh33Qdwz/bOUeatCG2Qfks5DTzzO/H6SeiL8YozEYXKfornjfVt/hBgfcPVPCOf1H/2qo12IGl/L3B18ld4ZSx37TbdTUpALih/A5dl8FVHel/jMPIKnQfd/H.avi
User Agent: Mozilla/5.0 (Windows NT 10.0; WOW64; Trident/7.0; rv:11.0) like Gecko

What’s interesting here is that the C2 server provides a Sufee Admin login page:

This C2 appears to have bad operational security (OPSEC) as browsing random URIs on the server reveals some of the dashboard’s contents:

The initial C2 communication was followed by sustained TCP beaconing to ksylviauudaren[.]band on 185.180.198[.]245 over port 443 with SSL encryption using a self-signed certificate. Darktrace highlighted this C2 behavior as Compromise / Sustained TCP Beaconing Activity To Rare Endpoint and Anomalous Connection / Repeated Rare External SSL Self-Signed IP.

As of the writing of this article, the domain ksylviauudaren[.]band was still not recognized in OSINT as malicious – highlighting again Darktrace’s independence of signatures and rules to catch previously unknown threats.

Conclusion

The cyber AI approach successfully detected the Ursnif infections even though the new variant of this malware was unknown to security vendors at the time. Moreover, it even managed to catch Ursnif’s file-less capabilities for lateral movement through its modelling of expected patterns of connectivity. In terms of the wider security context, the ease with which cyber AI flagged such sophisticated malware — malware which takes action by corrupting a computer’s own applications — further demonstrates that AI anomaly detection is the only way to navigate a threat landscape increasingly populated by near-invisible trojans.

IoCs

kieacsangelita[.]city · 209.141.60[.]214
muikarellep[.]band · 46.29.167[.]73
cjasminedison[.]com · 185.120.58[.]13
xqzuua1594[.]com · 94.154.10.[6]2
vwdlpknpsierra[.]email · 162.248.225[.]14
ksylviauudaren[.]band · 185.180.198[.]245

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

OT

/

November 20, 2025

Managing OT Remote Access with Zero Trust Control & AI Driven Detection

managing OT remote access with zero trust control and ai driven detectionDefault blog imageDefault blog image

The shift toward IT-OT convergence

Recently, industrial environments have become more connected and dependent on external collaboration. As a result, truly air-gapped OT systems have become less of a reality, especially when working with OEM-managed assets, legacy equipment requiring remote diagnostics, or third-party integrators who routinely connect in.

This convergence, whether it’s driven by digital transformation mandates or operational efficiency goals, are making OT environments more connected, more automated, and more intertwined with IT systems. While this convergence opens new possibilities, it also exposes the environment to risks that traditional OT architectures were never designed to withstand.

The modernization gap and why visibility alone isn’t enough

The push toward modernization has introduced new technology into industrial environments, creating convergence between IT and OT environments, and resulting in a lack of visibility. However, regaining that visibility is just a starting point. Visibility only tells you what is connected, not how access should be governed. And this is where the divide between IT and OT becomes unavoidable.

Security strategies that work well in IT often fall short in OT, where even small missteps can lead to environmental risk, safety incidents, or costly disruptions. Add in mounting regulatory pressure to enforce secure access, enforce segmentation, and demonstrate accountability, and it becomes clear: visibility alone is no longer sufficient. What industrial environments need now is precision. They need control. And they need to implement both without interrupting operations. All this requires identity-based access controls, real-time session oversight, and continuous behavioral detection.

The risk of unmonitored remote access

This risk becomes most evident during critical moments, such as when an OEM needs urgent access to troubleshoot a malfunctioning asset.

Under that time pressure, access is often provisioned quickly with minimal verification, bypassing established processes. Once inside, there’s little to no real-time oversight of user actions whether they’re executing commands, changing configurations, or moving laterally across the network. These actions typically go unlogged or unnoticed until something breaks. At that point, teams are stuck piecing together fragmented logs or post-incident forensics, with no clear line of accountability.  

In environments where uptime is critical and safety is non-negotiable, this level of uncertainty simply isn’t sustainable.

The visibility gap: Who’s doing what, and when?

The fundamental issue we encounter is the disconnect between who has access and what they are doing with it.  

Traditional access management tools may validate credentials and restrict entry points, but they rarely provide real-time visibility into in-session activity. Even fewer can distinguish between expected vendor behavior and subtle signs of compromise, misuse or misconfiguration.  

As a result, OT and security teams are often left blind to the most critical part of the puzzle, intent and behavior.

Closing the gaps with zero trust controls and AI‑driven detection

Managing remote access in OT is no longer just about granting a connection, it’s about enforcing strict access parameters while continuously monitoring for abnormal behavior. This requires a two-pronged approach: precision access control, and intelligent, real-time detection.

Zero Trust access controls provide the foundation. By enforcing identity-based, just-in-time permissions, OT environments can ensure that vendors and remote users only access the systems they’re explicitly authorized to interact with, and only for the time they need. These controls should be granular enough to limit access down to specific devices, commands, or functions. By applying these principles consistently across the Purdue Model, organizations can eliminate reliance on catch-all VPN tunnels, jump servers, and brittle firewall exceptions that expose the environment to excess risk.

Access control is only one part of the equation

Darktrace / OT complements zero trust controls with continuous, AI-driven behavioral detection. Rather than relying on static rules or pre-defined signatures, Darktrace uses Self-Learning AI to build a live, evolving understanding of what’s “normal” in the environment, across every device, protocol, and user. This enables real-time detection of subtle misconfigurations, credential misuse, or lateral movement as they happen, not after the fact.

By correlating user identity and session activity with behavioral analytics, Darktrace gives organizations the full picture: who accessed which system, what actions they performed, how those actions compared to historical norms, and whether any deviations occurred. It eliminates guesswork around remote access sessions and replaces it with clear, contextual insight.

Importantly, Darktrace distinguishes between operational noise and true cyber-relevant anomalies. Unlike other tools that lump everything, from CVE alerts to routine activity, into a single stream, Darktrace separates legitimate remote access behavior from potential misuse or abuse. This means organizations can both audit access from a compliance standpoint and be confident that if a session is ever exploited, the misuse will be surfaced as a high-fidelity, cyber-relevant alert. This approach serves as a compensating control, ensuring that even if access is overextended or misused, the behavior is still visible and actionable.

If a session deviates from learned baselines, such as an unusual command sequence, new lateral movement path, or activity outside of scheduled hours, Darktrace can flag it immediately. These insights can be used to trigger manual investigation or automated enforcement actions, such as access revocation or session isolation, depending on policy.

This layered approach enables real-time decision-making, supports uninterrupted operations, and delivers complete accountability for all remote activity, without slowing down critical work or disrupting industrial workflows.

Where Zero Trust Access Meets AI‑Driven Oversight:

  • Granular Access Enforcement: Role-based, just-in-time access that aligns with Zero Trust principles and meets compliance expectations.
  • Context-Enriched Threat Detection: Self-Learning AI detects anomalous OT behavior in real time and ties threats to access events and user activity.
  • Automated Session Oversight: Behavioral anomalies can trigger alerting or automated controls, reducing time-to-contain while preserving uptime.
  • Full Visibility Across Purdue Layers: Correlated data connects remote access events with device-level behavior, spanning IT and OT layers.
  • Scalable, Passive Monitoring: Passive behavioral learning enables coverage across legacy systems and air-gapped environments, no signatures, agents, or intrusive scans required.

Complete security without compromise

We no longer have to choose between operational agility and security control, or between visibility and simplicity. A Zero Trust approach, reinforced by real-time AI detection, enables secure remote access that is both permission-aware and behavior-aware, tailored to the realities of industrial operations and scalable across diverse environments.

Because when it comes to protecting critical infrastructure, access without detection is a risk and detection without access control is incomplete.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance

Blog

/

Network

/

November 21, 2025

Xillen Stealer Updates to Version 5 to Evade AI Detection

xillen stealer updates to version 5 to evade ai detectionDefault blog imageDefault blog image

Introduction

Python-based information stealer “Xillen Stealer” has recently released versions 4 and 5, expanding its targeting and functionality. The cross-platform infostealer, originally reported by Cyfirma in September 2025, targets sensitive data including credentials, cryptocurrency wallets, system information, browser data and employs anti-analysis techniques.  

The update to v4/v5 includes significantly more functionality, including:

  • Persistence
  • Ability to steal credentials from password managers, social media accounts, browser data (history, cookies and passwords) from over 100 browsers, cryptocurrency from over 70 wallets
  • Kubernetes configs and secrets
  • Docker scanning
  • Encryption
  • Polymorphism
  • System hooks
  • Peer-to-Peer (P2P) Command-and-Control (C2)
  • Single Sign-On (SSO) collector
  • Time-Based One-Time Passwords (TOTP) and biometric collection
  • EDR bypass
  • AI evasion
  • Interceptor for Two-Factor Authentication (2FA)
  • IoT scanning
  • Data exfiltration via Cloud APIs

Xillen Stealer is marketed on Telegram, with different licenses available for purchase. Users who deploy the malware have access to a professional-looking GUI that enables them to view exfiltrated data, logs, infections, configurations and subscription information.

Screenshot of the Xillen Stealer portal.
Figure 1: Screenshot of the Xillen Stealer portal.

Technical analysis

The following technical analysis examines some of the interesting functions of Xillen Stealer v4 and v5. The main functionality of Xillen Stealer is to steal cryptocurrency, credentials, system information, and account information from a range of stores.

Xillen Stealer specifically targets the following wallets and browsers:

AITargetDectection

Screenshot of Xillen Stealer’s AI Target detection function.
Figure 2: Screenshot of Xillen Stealer’s AI Target detection function.

The ‘AITargetDetection’ class is intended to use AI to detect high-value targets based on weighted indicators and relevant keywords defined in a dictionary. These indicators include “high value targets”, like cryptocurrency wallets, banking data, premium accounts, developer accounts, and business emails. Location indicators include high-value countries such as the United States, United Kingdom, Germany and Japan, along with cryptocurrency-friendly countries and financial hubs. Wealth indicators such as keywords like CEO, trader, investor and VIP have also been defined in a dictionary but are not in use at this time, pointing towards the group’s intent to develop further in the future.

While the class is named ‘AITargetDetection’ and includes placeholder functions for initializing and training a machine learning model, there is no actual implementation of machine learning. Instead, the system relies entirely on rule-based pattern matching for detection and scoring. Even though AI is not actually implemented in this code, it shows how malware developers could use AI in future malicious campaigns.

Screenshot of dead code function.
Figure 3: Screenshot of dead code function.

AI Evasion

Screenshot of AI evasion function to create entropy variance.
Figure 4: Screenshot of AI evasion function to create entropy variance.

‘AIEvasionEngine’ is a module designed to help malware evade AI-based or behavior-based detection systems, such as EDRs and sandboxes. It mimics legitimate user and system behavior, injects statistical noise, randomizes execution patterns, and camouflages resource usage. Its goal is to make the malware appear benign to machine learning detectors. The techniques used to achieve this are:

  • Behavioral Mimicking: Simulates user actions (mouse movement, fake browser use, file/network activity)
  • Noise Injection: Performs random memory, CPU, file, and network operations to confuse behavioral classifiers
  • Timing Randomization: Introduces irregular delays and sleep patterns to avoid timing-based anomaly detection
  • Resource Camouflage: Adjusts CPU and memory usage to imitate normal apps (such as browsers, text editors)
  • API Call Obfuscation: Random system API calls and pattern changes to hide malicious intent
  • Memory Access Obfuscation: Alters access patterns and entropy to bypass ML models monitoring memory behavior

PolymorphicEngine

As part of the “Rust Engine” available in Xillen Stealer is the Polymorphic Engine. The ‘PolymorphicEngine’ struct implements a basic polymorphic transformation system designed for obfuscation and detection evasion. It uses predefined instruction substitutions, control-flow pattern replacements, and dead code injection to produce varied output. The mutate_code() method scans input bytes and replaces recognized instruction patterns with randomized alternatives, then applies control flow obfuscation and inserts non-functional code to increase variability. Additional features include string encryption via XOR and a stub-based packer.

Collectors

DevToolsCollector

Figure 5: Screenshot of Kubernetes data function.

The ‘DevToolsCollector’ is designed to collect sensitive data related to a wide range of developer tools and environments. This includes:

IDE configurations

  • VS Code, VS Code Insiders, Visual Studio
  • JetBrains: Intellij, PyCharm, WebStorm
  • Sublime
  • Atom
  • Notepad++
  • Eclipse

Cloud credentials and configurations

  • AWS
  • GCP
  • Azure
  • Digital Ocean
  • Heroku

SSH keys

Docker & Kubernetes configurations

Git credentials

Database connection information

  • HeidiSQL
  • Navicat
  • DBeaver
  • MySQL Workbench
  • pgAdmin

API keys from .env files

FTP configs

  • FileZilla
  • WinSCP
  • Core FTP

VPN configurations

  • OpenVPN
  • WireGuard
  • NordVPN
  • ExpressVPN
  • CyberGhost

Container persistence

Screenshot of Kubernetes inject function.
Figure 6: Screenshot of Kubernetes inject function.

Biometric Collector

Screenshot of the ‘BiometricCollector’ function.
Figure 7: Screenshot of the ‘BiometricCollector’ function.

The ‘BiometricCollector’ attempts to collect biometric information from Windows systems by scanning the C:\Windows\System32\WinBioDatabase directory, which stores Windows Hello and other biometric configuration data. If accessible, it reads the contents of each file, encodes them in Base64, preparing them for later exfiltration. While the data here is typically encrypted by Windows, its collection indicates an attempt to extract sensitive biometric data.

Password Managers

The ‘PasswordManagerCollector’ function attempts to steal credentials stored in password managers including, OnePass, LastPass, BitWarden, Dashlane, NordPass and KeePass. However, this function is limited to Windows systems only.

SSOCollector

The ‘SSOCollector’ class is designed to collect authentication tokens related to SSO systems. It targets three main sources: Azure Active Directory tokens stored under TokenBroker\Cache, Kerberos tickets obtained through the klist command, and Google Cloud authentication data in user configuration folders. For each source, it checks known directories or commands, reads partial file contents, and stores the results as in a dictionary. Once again, this function is limited to Windows systems.

TOTP Collector

The ‘TOTP Collector’ class attempts to collect TOTPs from:

  • Authy Desktop by locating and reading from Authy.db SQLite databases
  • Microsoft Authenticator by scanning known application data paths for stored binary files
  • TOTP-related Chrome extensions by searching LevelDB files for identifiable keywords like “gauth” or “authenticator”.

Each method attempts to locate relevant files, parse or partially read their contents, and store them in a dictionary under labels like authy, microsoft_auth, or chrome_extension. However, as before, this is limited to Windows, and there is no handling for encrypted tokens.

Enterprise Collector

The ‘EnterpriseCollector’ class is used to extract credentials related to an enterprise Windows system. It targets configuration and credential data from:

  • VPN clients
    • Cisco AnyConnect, OpenVPN, Forticlient, Pulse Secure
  • RDP credentials
  • Corporate certificates
  • Active Directory tokens
  • Kerberos tickets cache

The files and directories are located based on standard environment variables with their contents read in binary mode and then encoded in Base64.

Super Extended Application Collector

The ‘SuperExtendedApplication’ Collector class is designed to scan an environment for 160 different applications on a Windows system. It iterates through the paths of a wide range of software categories including messaging apps, cryptocurrency wallets, password managers, development tools, enterprise tools, gaming clients, and security products. The list includes but is not limited to Teams, Slack, Mattermost, Zoom, Google Meet, MS Office, Defender, Norton, McAfee, Steam, Twitch, VMWare, to name a few.

Bypass

AppBoundBypass

This code outlines a framework for bypassing App Bound protections, Google Chrome' s cookie encryption. The ‘AppBoundBypass’ class attempts several evasion techniques, including memory injection, dynamic-link library (DLL) hijacking, process hollowing, atom bombing, and process doppelgänging to impersonate or hijack browser processes. As of the time of writing, the code contains multiple placeholders, indicating that the code is still in development.

Steganography

The ‘SteganographyModule’ uses steganography (hiding data within an image) to hide the stolen data, staging it for exfiltration. Multiple methods are implemented, including:

  • Image steganography: LSB-based hiding
  • NTFS Alternate Data Streams
  • Windows Registry Keys
  • Slack space: Writing into unallocated disk cluster space
  • Polyglot files: Appending archive data to images
  • Image metadata: Embedding data in EXIF tags
  • Whitespace encoding: Hiding binary in trailing spaces of text files

Exfiltration

CloudProxy

Screenshot of the ‘CloudProxy’ class.
Figure 8: Screenshot of the ‘CloudProxy’ class.

The CloudProxy class is designed for exfiltrating data by routing it through cloud service domains. It encodes the input data using Base64, attaches a timestamp and SHA-256 signature, and attempts to send this payload as a JSON object via HTTP POST requests to cloud URLs including AWS, GCP, and Azure, allowing the traffic to blend in. As of the time of writing, these public facing URLs do not accept POST requests, indicating that they are placeholders meant to be replaced with attacker-controlled cloud endpoints in a finalized build.

P2PEngine

Screenshot of the P2PEngine.
Figure 9: Screenshot of the P2PEngine.

The ‘P2PEngine’ provides multiple methods of C2, including embedding instructions within blockchain transactions (such as Bitcoin OP_RETURN, Ethereum smart contracts), exfiltrating data via anonymizing networks like Tor and I2P, and storing payloads on IPFS (a distributed file system). It also supports domain generation algorithms (DGA) to create dynamic .onion addresses for evading detection.

After a compromise, the stealer creates both HTML and TXT reports containing the stolen data. It then sends these reports to the attacker’s designated Telegram account.

Xillen Killers

 Xillen Killers.
FIgure 10: Xillen Killers.

Xillen Stealer appears to be developed by a self-described 15-year-old “pentest specialist” “Beng/jaminButton” who creates TikTok videos showing basic exploits and open-source intelligence (OSINT) techniques. The group distributing the information stealer, known as “Xillen Killers”, claims to have 3,000 members. Additionally, the group claims to have been involved in:

  • Analysis of Project DDoSia, a tool reportedly used by the NoName057(16) group, revealing that rather functioning as a distributed denial-of-service (DDos) tool, it is actually a remote access trojan (RAT) and stealer, along with the identification of involved individuals.
  • Compromise of doxbin.net in October 2025.
  • Discovery of vulnerabilities on a Russian mods site and a Ukrainian news site

The group, which claims to be part of the Russian IT scene, use Telegram for logging, marketing, and support.

Conclusion

While some components of XillenStealer remain underdeveloped, the range of intended feature set, which includes credential harvesting, cryptocurrency theft, container targeting, and anti-analysis techniques, suggests that once fully developed it could become a sophisticated stealer. The intention to use AI to help improve targeting in malware campaigns, even though not yet implemented, indicates how threat actors are likely to incorporate AI into future campaigns.  

Credit to Tara Gould (Threat Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendicies

Indicators of Compromise (IoCs)

395350d9cfbf32cef74357fd9cb66134 - confid.py

F3ce485b669e7c18b66d09418e979468 - stealer_v5_ultimate.py

3133fe7dc7b690264ee4f0fb6d867946 - xillen_v5.exe

https://github[.]com/BengaminButton/XillenStealer

https://github[.]com/BengaminButton/XillenStealer/commit/9d9f105df4a6b20613e3a7c55379dcbf4d1ef465

MITRE ATT&CK

ID Technique

T1059.006 - Python

T1555 - Credentials from Password Stores

T1555.003 - Credentials from Password Stores: Credentials from Web Browsers

T1555.005 - Credentials from Password Stores: Password Managers

T1649 - Steal or Forge Authentication Certificates

T1558 - Steal or Forge Kerberos Tickets

T1539 - Steal Web Session Cookie

T1552.001 - Unsecured Credentials: Credentials In Files

T1552.004 - Unsecured Credentials: Private Keys

T1552.005 - Unsecured Credentials: Cloud Instance Metadata API

T1217 - Browser Information Discovery

T1622 - Debugger Evasion

T1082 - System Information Discovery

T1497.001 - Virtualization/Sandbox Evasion: System Checks

T1115 - Clipboard Data

T1001.002 - Data Obfuscation: Steganography

T1567 - Exfiltration Over Web Service

T1657 - Financial Theft

Continue reading
About the author
Tara Gould
Threat Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI