Blog
/
Network
/
June 16, 2025

Tracking CVE-2025-31324: Darktrace’s detection of SAP Netweaver exploitation before and after disclosure 

A critical SAP vulnerability, CVE-2025-31324, allows unauthenticated remote code execution via NetWeaver Visual Composer. Despite early mitigation guidance, many systems remain exposed. Darktrace detected exploitation attempts six days before public disclosure, highlighting the importance of proactive, threat-agnostic detection.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Signe Zaharka
Principal Cyber Analyst
person working on laptopDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
16
Jun 2025

Introduction: Exploiting SAP platforms

Global enterprises depend extensively on SAP platforms, such as SAP NetWeaver and Visual Composer, to run critical business processes worldwide. These systems; however, are increasingly appealing targets for well-resourced adversaries:

What is CVE-2025-31324?

CVE-2025-31324 affects SAP’s NetWeaver Visual Composer, a web-based software modeling tool. SAP NetWeaver is an application server and development platform that runs and connects SAP and non-SAP applications across different technologies [2]. It is commonly used by process specialists to develop application components without coding in government agencies, large enterprises, and by critical infrastructure operators [4].

CVE-2025-31324 affects SAP’s Netweaver Visual Composer Framework 7.1x (all SPS) and above [4]. The vulnerability in a Java Servlet (/irj/servlet_jsp) would enable an unauthorized actor to upload arbitrary files to the /developmentserver/metadatauploader endpoint, potentially resulting in remote code execution (RCE) and full system compromise [3]. The issue stems from an improper authentication and authorization check in the SAP NetWeaver Application Server Java systems [4].

What is the severity rating of CVE-2025-31324?

The vulnerability, first disclosed on April 24, 2025, carries the highest severity rating (CVSS v3 score: 10.0) and could allow remote attackers to upload malicious files without requiring authentication [1][5]. Although SAP released a workaround on April 8, many organizations are hesitant to take their business-critical SAP NetWeaver systems offline, leaving them exposed to potential exploitation [2].

How is CVE-2025-31324 exploited?

The vulnerability is exploitable by sending specifically crafted GET, POST, or HEAD HTTP requests to the /developmentserver/metadatauploader URL using either HTTP or HTTPS. Attackers have been seen uploading malicious files (.jsp, .java, or .class files to paths containing “\irj\servlet_jsp\irj\”), most of them being web shells, to publicly accessible SAP NetWeaver systems.

External researchers observed reconnaissance activity targeting this vulnerability in late January 2025, followed by a surge in exploitation attempts in February. The first confirmed compromise was reported in March [4].

Multiple threat actors have reportedly targeted the vulnerability, including Chinese Advanced Persistent Threats (APTs) groups Chaya_004 [7], UNC5221, UNC5174, and CL-STA-0048 [8], as well as ransomware groups like RansomEXX, also known as Storm-2460, BianLian [4] or Qilin [6] (the latter two share the same indicators of  compromise (IoCs)).

Following the initial workaround published on April 8, SAP released a security update addressing CVE-2025-31324 and subsequently issued a patch on May 13 (Security Note 3604119) to resolve the root cause of the vulnerability [4].

Darktrace’s coverage of CVE-2025-31324 exploitation

Darktrace has observed activity indicative of threat actors exploiting CVE-2025-31324, including one instance detected before the vulnerability was publicly disclosed.

In April 2025, the Darktrace Threat Research team investigated activity related to the CVE-2025-31324 on SAP devices and identified two cases suggesting active exploitation of the vulnerability. One case was detected prior to the public disclosure of the vulnerability, and the other just two days after it was published.

Early detection of CVE 2025-31324 by Darktrace

Figure 1: Timeline of events for an internet-facing system, believed to be a SAP device, exhibiting activity indicative of CVE-2025-31324 exploitation.
Figure 1: Timeline of events for an internet-facing system, believed to be a SAP device, exhibiting activity indicative of CVE-2025-31324 exploitation.

On April 18, six days prior to the public disclosure of CVE-2025-31324, Darktrace began to detect unusual activity on a device belonging to a logistics organization in the Europe, the Middle East and Africa (EMEA) region. Multiple IoCs observed during this incident have since been linked via OSINT to the exploitation of CVE-2025-31324. Notably, however, this reporting was not available at the time of detection, highlighting Darktrace’s ability to detect threats agnostically, without relying on threat intelligence.

The device was observed making  domain name resolution request for the Out-of-Band Application Security Testing (OAST) domain cvvr9gl9namk9u955tsgaxy3upyezhnm6.oast[.]online. OAST is often used by security teams to test if exploitable vulnerabilities exist in a web application but can similarly be used by threat actors for the same purpose [9].

Four days later, on April 22, Darktrace observed the same device, an internet-facing system believed to be a SAP device, downloading multiple executable (.exe) files from several Amazon Simple Storage Service (S3). Darktrace’s Threat Research team later found these files to be associated with the KrustyLoader  malware [23][24][25].

KrustyLoader is known to be associated with the Chinese threat actor UNC5221, also known as UTA0178, which has been reported to aggressively target devices exposed to the internet [10] [14] [15]. It is an initial-stage malware which downloads and launches a second-stage payload – Sliver C2. Sliver is a similar tool to Cobalt Strike (an open-source post-exploitation toolkit). It is used for command-and-control (C2) connections [11][12]13]. After its successful download, KrustyLoader deletes itself to evade detection.  It has been reported that multiple Chinese APT groups have deployed KrustyLoader on SAP Netweaver systems post-compromise [8].

The actors behind KrustyLoader have also been associated with the exploitation of zero-day vulnerabilities in other enterprise systems, including Ivanti devices [12]. Notably, in this case, one of the Amazon S3 domains observed (abode-dashboard-media.s3.ap-south-1.amazonaws[.]com ) had previously been investigated by Darktrace’s Threat Research team as part of their investigation into Ivanti Connect Secure (CS) and Policy Secure (PS) appliances.

In addition to the download of known malicious files, Darktrace also detected new IoCs, including several executable files that could not be attributed to any known malware families or previous attacks, and for which no corresponding OSINT reporting was available.

Figure 2: Darktrace's detection of a likely SAP device downloading an executable file from an Amazon S3 domain on April 22*.

*The model alert was recreated in a demo environment using real incident metadata, as the original customer environment was no longer accessible.

Post-CVE publication detection

Exploit Validation

Between April 27 and 29, Darktrace observed unusual activity from an SAP device on the network of a manufacturing customer in EMEA.

Darktrace / NETWORK’s detection of an SAP device performing a large volume of suspicious activity between April 27 and April 29.
Figure 3: Darktrace / NETWORK’s detection of an SAP device performing a large volume of suspicious activity between April 27 and April 29.

The device was observed making DNS requests for OAST domains (e.g. aaaaaaaa.d06qqn7pu5a6u25tv9q08p5xhbjzw33ge.oast[.]online and aaaaaaaaaaa.d07j2htekalm3139uk2gowmxuhapkijtp.oast[.]pro), suggesting that a threat actor was testing for exploit validation [9].

Darktrace / NETWORK’s detection of a SAP device making suspicious domain name resolution requests for multiple OAST domains.
Figure 4: Darktrace / NETWORK’s detection of a SAP device making suspicious domain name resolution requests for multiple OAST domains.

Privilege escalation tool download attempt

One day later, Darktrace observed the same device attempting to download an executable file from hxxp://23.95.123[.]5:666/xmrigCCall/s.exe (SHA-1 file hash: e007edd4688c5f94a714fee036590a11684d6a3a).

Darktrace / NETWORK identified the user agents Microsoft-CryptoAPI/10.0 and CertUtil URL Agent during the connections to 23.95.123[.]5. The connections were made over port 666, which is not typically used for HTTP connections.

Multiple open-source intelligence (OSINT) vendors have identified the executable file as either JuicyPotato or SweetPotato, both Windows privilege escalation tools[16][17][18][19]. The file hash and the unusual external endpoint have been associated with the Chinese APT group Gelsemium in the past, however, many threat actors are known to leverage this tool in their attacks [20] [21].

Figure 5: Darktrace’s Cyber AI Analyst’s detection of a SAP device downloading a suspicious executable file from hxxp://23.95.123[.]5:666/xmrigCCall/s.exe on April 28, 2025.

Darktrace deemed this activity highly suspicious and triggered an Enhanced Monitoring model alert, a high-priority security model designed to detect activity likely indicative of compromise. As the customer was subscribed to the Managed Threat Detection service, Darktrace’s Security Operations Centre (SOC) promptly investigated the alert and notified the customer for swift remediation. Additionally, Darktrace’s Autonomous Response capability automatically blocked connections to the suspicious IP, 23.95.123[.]5, effectively containing the compromise in its early stages.

Actions taken by Darktrace’s Autonomous Response to block connections to the suspicious external endpoint 23.95.123[.]5. This event log shows that the connections to 23.95.123[.]5 were made over a rare destination port for the HTTP protocol and that new user agents were used during the connections.
Figure 6: Actions taken by Darktrace’s Autonomous Response to block connections to the suspicious external endpoint 23.95.123[.]5. This event log shows that the connections to 23.95.123[.]5 were made over a rare destination port for the HTTP protocol and that new user agents were used during the connections.

Conclusion

The exploitation of CVE-2025-31324 to compromise SAP NetWeaver systems highlights the persistent threat posed by vulnerabilities in public-facing assets. In this case, threat actors leveraged the flaw to gain an initial foothold, followed by attempts to deploy malware linked to groups affiliated with China [8][20].

Crucially, Darktrace demonstrated its ability to detect and respond to emerging threats even before they are publicly disclosed. Six days prior to the public disclosure of CVE-2025-31324, Darktrace detected unusual activity on a device believed to be a SAP system, which ultimately represented an early detection of the CVE. This detection was made possible through Darktrace’s behavioral analysis and anomaly detection, allowing it to recognize unexpected deviations in device behavior without relying on signatures, rules or known IoCs. Combined with its Autonomous Response capability, this allowed for immediate containment of suspicious activity, giving security teams valuable time to investigate and mitigate the threat.

Credit to Signe Zaharka (Principal Cyber Analyst), Emily Megan Lim, (Senior Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

List of IoCs

23.95.123[.]5:666/xmrigCCall/s.exe - URL- JuicyPotato/SweetPotato - high confidence

29274ca90e6dcf5ae4762739fcbadf01- MD5 file hash - JuicyPotato/SweetPotato - high confidence

e007edd4688c5f94a714fee036590a11684d6a3a - SHA-1 file hash - JuicyPotato/SweetPotato -high confidence

3268f269371a81dbdce8c4eedffd8817c1ec2eadec9ba4ab043cb779c2f8a5d2 - SHA-256 file hash - JuicyPotato/SweetPotato -high confidence

abode-dashboard-media.s3.ap-south-1.amazonaws[.]com/nVW2lsYsYnv58 - URL- high confidence

applr-malbbal.s3.ap-northeast-2.amazonaws[.]com/7p3ow2ZH - URL- high confidence

applr-malbbal.s3.ap-northeast-2.amazonaws[.]com/UUTICMm - URL- KrustyLoader - high confidence

beansdeals-static.s3.amazonaws[.]com/UsjKy - URL- high confidence

brandnav-cms-storage.s3.amazonaws[.]com/3S1kc - URL- KrustyLoader - high confidence

bringthenoiseappnew.s3.amazonaws[.]com/pp79zE - URL- KrustyLoader - high confidence

f662135bdd8bf792a941ea222e8a1330 - MD5 file hash- KrustyLoader - high confidence

fa645f33c0e3a98436a0161b19342f78683dbd9d - SHA-1 file hash- KrustyLoader - high confidence

1d26fff4232bc64f9ab3c2b09281d932dd6afb84a24f32d772d3f7bc23d99c60 - SHA-256 file hash- KrustyLoader - high confidence

6900e844f887321f22dd606a6f2925ef - MD5 file hash- KrustyLoader - high confidence

da23dab4851df3ef7f6e5952a2fc9a6a57ab6983 - SHA-1 file hash- KrustyLoader - high confidence

1544d9392eedf7ae4205dd45ad54ec67e5ce831d2c61875806ce4c86412a4344 - SHA-256 file hash- KrustyLoader - high confidence

83a797e5b47ce6e89440c47f6e33fa08 - MD5 file hash - high confidence

a29e8f030db8990c432020441c91e4b74d4a4e16 - SHA-1 file hash - high confidence

72afde58a1bed7697c0aa7fa8b4e3b03 - MD5 file hash- high confidence

fe931adc0531fd1cb600af0c01f307da3314c5c9 - SHA-1 file hash- high confidence

b8e56de3792dbd0f4239b54cfaad7ece3bd42affa4fbbdd7668492de548b5df8 - SHA-256 file hash- KrustyLoader - high confidence

17d65a9d8d40375b5b939b60f21eb06eb17054fc - SHA-1 file hash- KrustyLoader - high confidence

8c8681e805e0ae7a7d1a609efc000c84 - MD5 file hash- KrustyLoader - high confidence

29274ca90e6dcf5ae4762739fcbadf01 - MD5 file hash- KrustyLoader - high confidence

Darktrace Model Detections

Anomalous Connection / CertUtil Requesting Non Certificate

Anomalous Connection / CertUtil to Rare Destination

Anomalous Connection / Powershell to Rare External

Anomalous File / EXE from Rare External Location

Anomalous File / Multiple EXE from Rare External Locations

Anomalous File / Internet Facing System File Download

Anomalous File / Masqueraded File Transfer (Enhanced Monitoring)

Anomalous Server Activity / New User Agent from Internet Facing System

Compliance / CertUtil External Connection

Compromise / High Priority Tunnelling to Bin Services (Enhanced Monitoring)

Compromise / Possible Tunnelling to Bin Services

Device / Initial Attack Chain Activity (Enhanced Monitoring)

Device / Suspicious Domain

Device / Internet Facing Device with High Priority Alert

Device / Large Number of Model Alerts

Device / Large Number of Model Alerts from Critical Network Device (Enhanced Monitoring)

Device / New PowerShell User Agent

Device / New User Agent

Autonomous Response Model Alerts

Antigena / Network / External Threat / Antigena Suspicious File Block

Antigena / Network / Significant Anomaly / Antigena Controlled and Model Alert

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

Antigena/ Network / External Threat / Antigena Suspicious File Block

Antigena/ Network / External Threat / Antigena Suspicious File Pattern of Life Block

Antigena/ Network / Significant Anomaly / Antigena Alerts Over Time Block

Antigena/ Network / Significant Anomaly / Antigena Controlled and Model Alert

Antigena/ Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Antigena/ Network / Significant Anomaly / Antigena Significant Server Anomaly Block

Cyber AI Analyst Incidents

Possible HTTP Command and Control

Suspicious File Download

MITRE ATT&CK Mapping

Malware - RESOURCE DEVELOPMENT - T1588.001

PowerShell - EXECUTION - T1059.001

Drive-by Compromise - INITIAL ACCESS - T1189

Ingress Tool Transfer - COMMAND AND CONTROL - T1105

Application Layer Protocol - COMMAND AND CONTROL - T1071

Exploitation of Remote Services - LATERAL MOVEMENT - T1210

Exfiltration Over Unencrypted/Obfuscated Non-C2 Protocol - EXFILTRATION - T1048.003

References

1. https://nvd.nist.gov/vuln/detail/CVE-2025-31324

2. https://www.bleepingcomputer.com/news/security/over-1-200-sap-netweaver-servers-vulnerable-to-actively-exploited-flaw/

3. https://reliaquest.com/blog/threat-spotlight-reliaquest-uncovers-vulnerability-behind-sap-netweaver-compromise/

4. https://onapsis.com/blog/active-exploitation-of-sap-vulnerability-cve-2025-31324/

5. https://www.bleepingcomputer.com/news/security/sap-fixes-suspected-netweaver-zero-day-exploited-in-attacks/

6. https://op-c.net/blog/sap-cve-2025-31324-qilin-breach/

7. https://www.forescout.com/blog/threat-analysis-sap-vulnerability-exploited-in-the-wild-by-chinese-threat-actor/

8. https://blog.eclecticiq.com/china-nexus-nation-state-actors-exploit-sap-netweaver-cve-2025-31324-to-target-critical-infrastructures

9. https://portswigger.net/burp/application-security-testing/oast

10. https://www.picussecurity.com/resource/blog/unc5221-cve-2025-22457-ivanti-connect-secure  

11. https://malpedia.caad.fkie.fraunhofer.de/details/elf.krustyloader

12. https://www.broadcom.com/support/security-center/protection-bulletin/krustyloader-backdoor

13. https://labs.withsecure.com/publications/new-krustyloader-variant-dropped-via-screenconnect-exploit

14. https://blog.eclecticiq.com/china-nexus-threat-actor-actively-exploiting-ivanti-endpoint-manager-mobile-cve-2025-4428-vulnerability

15. https://thehackernews.com/2024/01/chinese-hackers-exploiting-critical-vpn.html

16. https://www.virustotal.com/gui/file/3268f269371a81dbdce8c4eedffd8817c1ec2eadec9ba4ab043cb779c2f8a5d2

17. https://bazaar.abuse.ch/sample/3268f269371a81dbdce8c4eedffd8817c1ec2eadec9ba4ab043cb779c2f8a5d2/

18. https://www.fortinet.com/content/dam/fortinet/assets/analyst-reports/report-juicypotato-hacking-tool-discovered.pdf

19. https://www.manageengine.com/log-management/correlation-rules/detecting-sweetpotato.html

20. https://unit42.paloaltonetworks.com/rare-possible-gelsemium-attack-targets-se-asia/

21. https://assets.kpmg.com/content/dam/kpmg/in/pdf/2023/10/kpmg-ctip-gelsemium-apt-31-oct-2023.pdf

22. https://securityaffairs.com/177522/hacking/experts-warn-of-a-second-wave-of-attacks-targeting-sap-netweaver-bug-cve-2025-31324.html

23. https://www.virustotal.com/gui/file/b8e56de3792dbd0f4239b54cfaad7ece3bd42affa4fbbdd7668492de548b5df8

24. https://www.virustotal.com/gui/file/1d26fff4232bc64f9ab3c2b09281d932dd6afb84a24f32d772d3f7bc23d99c60/detection

25. https://www.virustotal.com/gui/file/1544d9392eedf7ae4205dd45ad54ec67e5ce831d2c61875806ce4c86412a4344/detection

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Signe Zaharka
Principal Cyber Analyst

More in this series

No items found.

Blog

/

Email

/

September 30, 2025

Out of Character: Detecting Vendor Compromise and Trusted Relationship Abuse with Darktrace

vendor email compromiseDefault blog imageDefault blog image

What is Vendor Email Compromise?

Vendor Email Compromise (VEC) refers to an attack where actors breach a third-party provider to exploit their access, relationships, or systems for malicious purposes. The initially compromised entities are often the target’s existing partners, though this can extend to any organization or individual the target is likely to trust.

It sits at the intersection of supply chain attacks and business email compromise (BEC), blending technical exploitation with trust-based deception. Attackers often infiltrate existing conversations, leveraging AI to mimic tone and avoid common spelling and grammar pitfalls. Malicious content is typically hosted on otherwise reputable file sharing platforms, meaning any shared links initially seem harmless.

While techniques to achieve initial access may have evolved, the goals remain familiar. Threat actors harvest credentials, launch subsequent phishing campaigns, attempt to redirect invoice payments for financial gain, and exfiltrate sensitive corporate data.

Why traditional defenses fall short

These subtle and sophisticated email attacks pose unique challenges for defenders. Few busy people would treat an ongoing conversation with a trusted contact with the same level of suspicion as an email from the CEO requesting ‘URGENT ASSISTANCE!’ Unfortunately, many traditional secure email gateways (SEGs) struggle with this too. Detecting an out-of-character email, when it does not obviously appear out of character, is a complex challenge. It’s hardly surprising, then, that 83% of organizations have experienced a security incident involving third-party vendors [1].  

This article explores how Darktrace detected four different vendor compromise campaigns for a single customer, within a two-week period in 2025.  Darktrace / EMAIL successfully identified the subtle indicators that these seemingly benign emails from trusted senders were, in fact, malicious. Due to the configuration of Darktrace / EMAIL in this customer’s environment, it was unable to take action against the malicious emails. However, if fully enabled to take Autonomous Response, it would have held all offending emails identified.

How does Darktrace detect vendor compromise?

The answer lies at the core of how Darktrace operates: anomaly detection. Rather than relying on known malicious rules or signatures, Darktrace learns what ‘normal’ looks like for an environment, then looks for anomalies across a wide range of metrics. Despite the resourcefulness of the threat actors involved in this case, Darktrace identified many anomalies across these campaigns.

Different campaigns, common traits

A wide variety of approaches was observed. Individuals, shared mailboxes and external contractors were all targeted. Two emails originated from compromised current vendors, while two came from unknown compromised organizations - one in an associated industry. The sender organizations were either familiar or, at the very least, professional in appearance, with no unusual alphanumeric strings or suspicious top-level domains (TLDs). Subject line, such as “New Approved Statement From [REDACTED]” and “[REDACTED] - Proposal Document” appeared unremarkable and were not designed to provoke heightened emotions like typical social engineering or BEC attempts.

All emails had been given a Microsoft Spam Confidence Level of 1, indicating Microsoft did not consider them to be spam or malicious [2]. They also passed authentication checks (including SPF, and in some cases DKIM and DMARC), meaning they appeared to originate from an authentic source for the sender domain and had not been tampered with in transit.  

All observed phishing emails contained a link hosted on a legitimate and commonly used file-sharing site. These sites were often convincingly themed, frequently featuring the name of a trusted vendor either on the page or within the URL, to appear authentic and avoid raising suspicion. However, these links served only as the initial step in a more complex, multi-stage phishing process.

A legitimate file sharing site used in phishing emails to host a secondary malicious link.
Figure 1: A legitimate file sharing site used in phishing emails to host a secondary malicious link.
Another example of a legitimate file sharing endpoint sent in a phishing email and used to host a malicious link.
Figure 2: Another example of a legitimate file sharing endpoint sent in a phishing email and used to host a malicious link.

If followed, the recipient would be redirected, sometimes via CAPTCHA, to fake Microsoft login pages designed to capturing credentials, namely http://pub-ac94c05b39aa4f75ad1df88d384932b8.r2[.]dev/offline[.]html and https://s3.us-east-1.amazonaws[.]com/s3cure0line-0365cql0.19db86c3-b2b9-44cc-b339-36da233a3be2ml0qin/s3cccql0.19db86c3-b2b9-44cc-b339-36da233a3be2%26l0qn[.]html#.

The latter made use of homoglyphs to deceive the user, with a link referencing ‘s3cure0line’, rather than ‘secureonline’. Post-incident investigation using open-source intelligence (OSINT) confirmed that the domains were linked to malicious phishing endpoints [3] [4].

Fake Microsoft login page designed to harvest credentials.
Figure 3: Fake Microsoft login page designed to harvest credentials.
Phishing kit with likely AI-generated image, designed to harvest user credentials. The URL uses ‘s3cure0line’ instead of ‘secureonline’, a subtle misspelling intended to deceive users.
Figure 4: Phishing kit with likely AI-generated image, designed to harvest user credentials. The URL uses ‘s3cure0line’ instead of ‘secureonline’, a subtle misspelling intended to deceive users.

Darktrace Anomaly Detection

Some senders were unknown to the network, with no previous outbound or inbound emails. Some had sent the email to multiple undisclosed recipients using BCC, an unusual behavior for a new sender.  

Where the sender organization was an existing vendor, Darktrace recognized out-of-character behavior, in this case it was the first time a link to a particular file-sharing site had been shared. Often the links themselves exhibited anomalies, either being unusually prominent or hidden altogether - masked by text or a clickable image.

Crucially, Darktrace / EMAIL is able to identify malicious links at the time of processing the emails, without needing to visit the URLs or analyze the destination endpoints, meaning even the most convincing phishing pages cannot evade detection – meaning even the most convincing phishing emails cannot evade detection. This sets it apart from many competitors who rely on crawling the endpoints present in emails. This, among other things, risks disruption to user experience, such as unsubscribing them from emails, for instance.

Darktrace was also able to determine that the malicious emails originated from a compromised mailbox, using a series of behavioral and contextual metrics to make the identification. Upon analysis of the emails, Darktrace autonomously assigned several contextual tags to highlight their concerning elements, indicating that the messages contained phishing links, were likely sent from a compromised account, and originated from a known correspondent exhibiting out-of-character behavior.

A summary of the anomalous email, confirming that it contained a highly suspicious link.
Figure 5: Tags assigned to offending emails by Darktrace / EMAIL.

Figure 6: A summary of the anomalous email, confirming that it contained a highly suspicious link.

Out-of-character behavior caught in real-time

In another customer environment around the same time Darktrace / EMAIL detected multiple emails with carefully crafted, contextually appropriate subject lines sent from an established correspondent being sent to 30 different recipients. In many cases, the attacker hijacked existing threads and inserted their malicious emails into an ongoing conversation in an effort to blend in and avoid detection. As in the previous, the attacker leveraged a well-known service, this time ClickFunnels, to host a document containing another malicious link. Once again, they were assigned a Microsoft Spam Confidence Level of 1, indicating that they were not considered malicious.

The legitimate ClickFunnels page used to host a malicious phishing link.
Figure 7: The legitimate ClickFunnels page used to host a malicious phishing link.

This time, however, the customer had Darktrace / EMAIL fully enabled to take Autonomous Response against suspicious emails. As a result, when Darktrace detected the out-of-character behavior, specifically, the sharing of a link to a previously unused file-sharing domain, and identified the likely malicious intent of the message, it held the email, preventing it from reaching recipients’ inboxes and effectively shutting down the attack.

Figure 8: Darktrace / EMAIL’s detection of malicious emails inserted into an existing thread.*

*To preserve anonymity, all real customer names, email addresses, and other identifying details have been redacted and replaced with fictitious placeholders.

Legitimate messages in the conversation were assigned an Anomaly Score of 0, while the newly inserted malicious emails identified and were flagged with the maximum score of 100.

Key takeaways for defenders

Phishing remains big business, and as the landscape evolves, today’s campaigns often look very different from earlier versions. As with network-based attacks, threat actors are increasingly leveraging legitimate tools and exploiting trusted relationships to carry out their malicious goals, often staying under the radar of security teams and traditional email defenses.

As attackers continue to exploit trusted relationships between organizations and their third-party associates, security teams must remain vigilant to unexpected or suspicious email activity. Protecting the digital estate requires an email solution capable of identifying malicious characteristics, even when they originate from otherwise trusted senders.

Credit to Jennifer Beckett (Cyber Analyst), Patrick Anjos (Senior Cyber Analyst), Ryan Traill (Analyst Content Lead), Kiri Addison (Director of Product)

Appendices

IoC - Type - Description + Confidence  

- http://pub-ac94c05b39aa4f75ad1df88d384932b8.r2[.]dev/offline[.]html#p – fake Microsoft login page

- https://s3.us-east-1.amazonaws[.]com/s3cure0line-0365cql0.19db86c3-b2b9-44cc-b339-36da233a3be2ml0qin/s3cccql0.19db86c3-b2b9-44cc-b339-36da233a3be2%26l0qn[.]html# - link to domain used in homoglyph attack

MITRE ATT&CK Mapping  

Tactic – Technique – Sub-Technique  

Initial Access - Phishing – (T1566)  

References

1.     https://gitnux.org/third-party-risk-statistics/

2.     https://learn.microsoft.com/en-us/defender-office-365/anti-spam-spam-confidence-level-scl-about

3.     https://www.virustotal.com/gui/url/5df9aae8f78445a590f674d7b64c69630c1473c294ce5337d73732c03ab7fca2/detection

4.     https://www.virustotal.com/gui/url/695d0d173d1bd4755eb79952704e3f2f2b87d1a08e2ec660b98a4cc65f6b2577/details

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content

Continue reading
About the author

Blog

/

OT

/

September 30, 2025

Announcing Unified OT Security with Dedicated OT Workflows, Segmentation-Aware Risk Insights, and Next-Gen Endpoint Visibility for Industrial Teams

Default blog imageDefault blog image

The challenge of convergence without clarity

Convergence is no longer a roadmap idea, it is the daily reality for industrial security teams. As Information Technology (IT) and Operational Technology (OT) environments merge, the line between a cyber incident and an operational disruption grows increasingly hard to define. A misconfigured firewall rule can lead to downtime. A protocol misuse might look like a glitch. And when a pump stalls but nothing appears in the Security Operations Center (SOC) dashboard, teams are left asking: is this operational or is this a threat?

The lack of shared context slows down response, creates friction between SOC analysts and plant engineers, and leaves organizations vulnerable at exactly the points where IT and OT converge. Defenders need more than alerts, they need clarity that both sides can trust.

The breakthrough with Darktrace / OT

This latest Darktrace / OT release was built to deliver exactly that. It introduces shared context between Security, IT, and OT operations, helping reduce friction and close the security gaps at the intersection of these domains.

With a dedicated dashboard built for operations teams, extended visibility into endpoints for new forms of detection and CVE collection, expanded protocol coverage, and smarter risk modeling aligned to segmentation policies, teams can now operate from a shared source of truth. These enhancements are not just incremental upgrades, they are foundational improvements designed to bring clarity, efficiency, and trust to converged environments.

A dashboard built for OT engineers

The new Operational Overview provides OT engineers with a workspace designed for them, not for SOC analysts. It brings asset management, risk insights and operational alerts into one place. Engineers can now see activity like firmware changes, controller reprograms or the sudden appearance of a new workstation on the network, providing a tailored view for critical insights and productivity gains without navigating IT-centric workflows. Each device view is now enriched with cross-linked intelligence, make, model, firmware version and the roles inferred by Self-Learning AI, making it easier to understand how each asset behaves, what function it serves, and where it fits within the broader industrial process. By suppressing IT-centric noise, the dashboard highlights only the anomalies that matter to operations, accelerating triage, enabling smoother IT/OT collaboration, and reducing time to root cause without jumping between tools.

This is usability with purpose, a view that matches OT workflows and accelerates response.

Figure 1: The Operational Overview provides an intuitive dashboard summarizing all OT Assets, Alerts, and Risk.

Full-spectrum coverage across endpoints, sensors and protocols

The release also extends visibility into areas that have traditionally been blind spots. Engineering workstations, Human-Machine Interfaces (HMIs), contractor laptops and field devices are often the entry points for attackers, yet the hardest to monitor.

Darktrace introduces Network Endpoint eXtended Telemetry (NEXT) for OT, a lightweight collector built for segmented and resource-constrained environments. NEXT for OT uses Endpoint sensors to capture localized network, and now process-level telemetry, placing it in context alongside other network and asset data to:

  1. Identify vulnerabilities and OS data, which is leveraged by OT Risk Management for risk scoring and patching prioritization, removing the need for third-party CVE collection.
  1. Surface novel threats using Self-Learning AI that standalone Endpoint Detection and Response (EDR) would miss.
  1. Extend Cyber AI Analyst investigations through to the endpoint root cause.

NEXT is part of our existing cSensor endpoint agent, can be deployed standalone or alongside existing EDR tools, and allows capabilities to be enabled or disabled depending on factors such as security or OT team objectives and resource utilization.

Figure 2: Darktrace / OT delivers CVE patch priority insights by combining threat intelligence with extended network and endpoint telemetry

The family of Darktrace Endpoint sensors also receive a boost in deployment flexibility, with on-prem server-based setups, as well as a Windows driver tailored for zero-trust and high-security environments.

Protocol coverage has been extended where it matters most. Darktrace now performs protocol analysis of a wider range of GE and Mitsubishi protocols, giving operators real-time visibility into commands and state changes on Programmable Logic Controllers (PLCs), robots and controllers. Backed by Self-Learning AI, this inspection does more than parse traffic, it understands what normal looks like and flags deviations that signal risk.

Integrated risk and governance workflows

Security data is only valuable when it drives action. Darktrace / OT delivers risk insights that go beyond patching, helping teams take meaningful steps even when remediation isn't possible. Risk is assessed not just by CVE presence, but by how network segmentation, firewall policies, and attack path logic neutralize or contain real-world exposure. This approach empowers defenders to deprioritize low-impact vulnerabilities and focus effort where risk truly exists. Building on the foundation introduced in release 6.3, such as KEV enrichment, endpoint OS data, and exploit mapping, this release introduces new integrations that bring Darktrace / OT intelligence directly into governance workflows.

Fortinet FortiGate firewall ingestion feeds segmentation rules into attack path modeling, revealing real exposure when policies fail and closing feeds into patching prioritization based on a policy to CVE exposure assessment.

  • ServiceNow Configuration Management Database (CMDB) sync ensures asset intelligence stays current across governance platforms, eliminating manual inventory work.

Risk modeling has also been made more operationally relevant. Scores are now contextualized by exploitability, asset criticality, firewall policy, and segmentation posture. Patch recommendations are modeled in terms of safety, uptime and compliance rather than just Common Vulnerability Scoring System (CVSS) numbers. And importantly, risk is prioritized across the Purdue Model, giving defenders visibility into whether vulnerabilities remain isolated to IT or extend into OT-critical layers.

Figure 3: Attack Path Modeling based on NetFlow and network topology reveals high risk points of IT/OT convergence.

The real-world impact for defenders

In today’s environments, attackers move fluidly between IT and OT. Without unified visibility and shared context, incidents cascade faster than teams can respond.

With this release, Darktrace / OT changes that reality. The Operational Overview gives Engineers a dashboard they can use daily, tailored to their workflows. SOC analysts can seamlessly investigate telemetry across endpoints, sensors and protocols that were once blind spots. Operators gain transparency into PLCs and controllers. Governance teams benefit from automated integrations with platforms like Fortinet and ServiceNow. And all stakeholders work from risk models that reflect what truly matters: safety, uptime and compliance.

This release is not about creating more alerts. It is about providing more clarity. By unifying context across IT and OT, Darktrace / OT enables defenders to see more, understand more and act faster.

Because in environments where safety and uptime are non-negotiable, clarity is what matters most.

Join us for our live event where we will discuss these product innovations in greater detail

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI