Blog
/
Network
/
June 16, 2025

Tracking CVE-2025-31324: Darktrace’s detection of SAP Netweaver exploitation before and after disclosure 

A critical SAP vulnerability, CVE-2025-31324, allows unauthenticated remote code execution via NetWeaver Visual Composer. Despite early mitigation guidance, many systems remain exposed. Darktrace detected exploitation attempts six days before public disclosure, highlighting the importance of proactive, threat-agnostic detection.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Signe Zaharka
Principal Cyber Analyst
person working on laptopDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
16
Jun 2025

Introduction: Exploiting SAP platforms

Global enterprises depend extensively on SAP platforms, such as SAP NetWeaver and Visual Composer, to run critical business processes worldwide. These systems; however, are increasingly appealing targets for well-resourced adversaries:

What is CVE-2025-31324?

CVE-2025-31324 affects SAP’s NetWeaver Visual Composer, a web-based software modeling tool. SAP NetWeaver is an application server and development platform that runs and connects SAP and non-SAP applications across different technologies [2]. It is commonly used by process specialists to develop application components without coding in government agencies, large enterprises, and by critical infrastructure operators [4].

CVE-2025-31324 affects SAP’s Netweaver Visual Composer Framework 7.1x (all SPS) and above [4]. The vulnerability in a Java Servlet (/irj/servlet_jsp) would enable an unauthorized actor to upload arbitrary files to the /developmentserver/metadatauploader endpoint, potentially resulting in remote code execution (RCE) and full system compromise [3]. The issue stems from an improper authentication and authorization check in the SAP NetWeaver Application Server Java systems [4].

What is the severity rating of CVE-2025-31324?

The vulnerability, first disclosed on April 24, 2025, carries the highest severity rating (CVSS v3 score: 10.0) and could allow remote attackers to upload malicious files without requiring authentication [1][5]. Although SAP released a workaround on April 8, many organizations are hesitant to take their business-critical SAP NetWeaver systems offline, leaving them exposed to potential exploitation [2].

How is CVE-2025-31324 exploited?

The vulnerability is exploitable by sending specifically crafted GET, POST, or HEAD HTTP requests to the /developmentserver/metadatauploader URL using either HTTP or HTTPS. Attackers have been seen uploading malicious files (.jsp, .java, or .class files to paths containing “\irj\servlet_jsp\irj\”), most of them being web shells, to publicly accessible SAP NetWeaver systems.

External researchers observed reconnaissance activity targeting this vulnerability in late January 2025, followed by a surge in exploitation attempts in February. The first confirmed compromise was reported in March [4].

Multiple threat actors have reportedly targeted the vulnerability, including Chinese Advanced Persistent Threats (APTs) groups Chaya_004 [7], UNC5221, UNC5174, and CL-STA-0048 [8], as well as ransomware groups like RansomEXX, also known as Storm-2460, BianLian [4] or Qilin [6] (the latter two share the same indicators of  compromise (IoCs)).

Following the initial workaround published on April 8, SAP released a security update addressing CVE-2025-31324 and subsequently issued a patch on May 13 (Security Note 3604119) to resolve the root cause of the vulnerability [4].

Darktrace’s coverage of CVE-2025-31324 exploitation

Darktrace has observed activity indicative of threat actors exploiting CVE-2025-31324, including one instance detected before the vulnerability was publicly disclosed.

In April 2025, the Darktrace Threat Research team investigated activity related to the CVE-2025-31324 on SAP devices and identified two cases suggesting active exploitation of the vulnerability. One case was detected prior to the public disclosure of the vulnerability, and the other just two days after it was published.

Early detection of CVE 2025-31324 by Darktrace

Figure 1: Timeline of events for an internet-facing system, believed to be a SAP device, exhibiting activity indicative of CVE-2025-31324 exploitation.
Figure 1: Timeline of events for an internet-facing system, believed to be a SAP device, exhibiting activity indicative of CVE-2025-31324 exploitation.

On April 18, six days prior to the public disclosure of CVE-2025-31324, Darktrace began to detect unusual activity on a device belonging to a logistics organization in the Europe, the Middle East and Africa (EMEA) region. Multiple IoCs observed during this incident have since been linked via OSINT to the exploitation of CVE-2025-31324. Notably, however, this reporting was not available at the time of detection, highlighting Darktrace’s ability to detect threats agnostically, without relying on threat intelligence.

The device was observed making  domain name resolution request for the Out-of-Band Application Security Testing (OAST) domain cvvr9gl9namk9u955tsgaxy3upyezhnm6.oast[.]online. OAST is often used by security teams to test if exploitable vulnerabilities exist in a web application but can similarly be used by threat actors for the same purpose [9].

Four days later, on April 22, Darktrace observed the same device, an internet-facing system believed to be a SAP device, downloading multiple executable (.exe) files from several Amazon Simple Storage Service (S3). Darktrace’s Threat Research team later found these files to be associated with the KrustyLoader  malware [23][24][25].

KrustyLoader is known to be associated with the Chinese threat actor UNC5221, also known as UTA0178, which has been reported to aggressively target devices exposed to the internet [10] [14] [15]. It is an initial-stage malware which downloads and launches a second-stage payload – Sliver C2. Sliver is a similar tool to Cobalt Strike (an open-source post-exploitation toolkit). It is used for command-and-control (C2) connections [11][12]13]. After its successful download, KrustyLoader deletes itself to evade detection.  It has been reported that multiple Chinese APT groups have deployed KrustyLoader on SAP Netweaver systems post-compromise [8].

The actors behind KrustyLoader have also been associated with the exploitation of zero-day vulnerabilities in other enterprise systems, including Ivanti devices [12]. Notably, in this case, one of the Amazon S3 domains observed (abode-dashboard-media.s3.ap-south-1.amazonaws[.]com ) had previously been investigated by Darktrace’s Threat Research team as part of their investigation into Ivanti Connect Secure (CS) and Policy Secure (PS) appliances.

In addition to the download of known malicious files, Darktrace also detected new IoCs, including several executable files that could not be attributed to any known malware families or previous attacks, and for which no corresponding OSINT reporting was available.

Figure 2: Darktrace's detection of a likely SAP device downloading an executable file from an Amazon S3 domain on April 22*.

*The model alert was recreated in a demo environment using real incident metadata, as the original customer environment was no longer accessible.

Post-CVE publication detection

Exploit Validation

Between April 27 and 29, Darktrace observed unusual activity from an SAP device on the network of a manufacturing customer in EMEA.

Darktrace / NETWORK’s detection of an SAP device performing a large volume of suspicious activity between April 27 and April 29.
Figure 3: Darktrace / NETWORK’s detection of an SAP device performing a large volume of suspicious activity between April 27 and April 29.

The device was observed making DNS requests for OAST domains (e.g. aaaaaaaa.d06qqn7pu5a6u25tv9q08p5xhbjzw33ge.oast[.]online and aaaaaaaaaaa.d07j2htekalm3139uk2gowmxuhapkijtp.oast[.]pro), suggesting that a threat actor was testing for exploit validation [9].

Darktrace / NETWORK’s detection of a SAP device making suspicious domain name resolution requests for multiple OAST domains.
Figure 4: Darktrace / NETWORK’s detection of a SAP device making suspicious domain name resolution requests for multiple OAST domains.

Privilege escalation tool download attempt

One day later, Darktrace observed the same device attempting to download an executable file from hxxp://23.95.123[.]5:666/xmrigCCall/s.exe (SHA-1 file hash: e007edd4688c5f94a714fee036590a11684d6a3a).

Darktrace / NETWORK identified the user agents Microsoft-CryptoAPI/10.0 and CertUtil URL Agent during the connections to 23.95.123[.]5. The connections were made over port 666, which is not typically used for HTTP connections.

Multiple open-source intelligence (OSINT) vendors have identified the executable file as either JuicyPotato or SweetPotato, both Windows privilege escalation tools[16][17][18][19]. The file hash and the unusual external endpoint have been associated with the Chinese APT group Gelsemium in the past, however, many threat actors are known to leverage this tool in their attacks [20] [21].

Figure 5: Darktrace’s Cyber AI Analyst’s detection of a SAP device downloading a suspicious executable file from hxxp://23.95.123[.]5:666/xmrigCCall/s.exe on April 28, 2025.

Darktrace deemed this activity highly suspicious and triggered an Enhanced Monitoring model alert, a high-priority security model designed to detect activity likely indicative of compromise. As the customer was subscribed to the Managed Threat Detection service, Darktrace’s Security Operations Centre (SOC) promptly investigated the alert and notified the customer for swift remediation. Additionally, Darktrace’s Autonomous Response capability automatically blocked connections to the suspicious IP, 23.95.123[.]5, effectively containing the compromise in its early stages.

Actions taken by Darktrace’s Autonomous Response to block connections to the suspicious external endpoint 23.95.123[.]5. This event log shows that the connections to 23.95.123[.]5 were made over a rare destination port for the HTTP protocol and that new user agents were used during the connections.
Figure 6: Actions taken by Darktrace’s Autonomous Response to block connections to the suspicious external endpoint 23.95.123[.]5. This event log shows that the connections to 23.95.123[.]5 were made over a rare destination port for the HTTP protocol and that new user agents were used during the connections.

Conclusion

The exploitation of CVE-2025-31324 to compromise SAP NetWeaver systems highlights the persistent threat posed by vulnerabilities in public-facing assets. In this case, threat actors leveraged the flaw to gain an initial foothold, followed by attempts to deploy malware linked to groups affiliated with China [8][20].

Crucially, Darktrace demonstrated its ability to detect and respond to emerging threats even before they are publicly disclosed. Six days prior to the public disclosure of CVE-2025-31324, Darktrace detected unusual activity on a device believed to be a SAP system, which ultimately represented an early detection of the CVE. This detection was made possible through Darktrace’s behavioral analysis and anomaly detection, allowing it to recognize unexpected deviations in device behavior without relying on signatures, rules or known IoCs. Combined with its Autonomous Response capability, this allowed for immediate containment of suspicious activity, giving security teams valuable time to investigate and mitigate the threat.

Credit to Signe Zaharka (Principal Cyber Analyst), Emily Megan Lim, (Senior Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

List of IoCs

23.95.123[.]5:666/xmrigCCall/s.exe - URL- JuicyPotato/SweetPotato - high confidence

29274ca90e6dcf5ae4762739fcbadf01- MD5 file hash - JuicyPotato/SweetPotato - high confidence

e007edd4688c5f94a714fee036590a11684d6a3a - SHA-1 file hash - JuicyPotato/SweetPotato -high confidence

3268f269371a81dbdce8c4eedffd8817c1ec2eadec9ba4ab043cb779c2f8a5d2 - SHA-256 file hash - JuicyPotato/SweetPotato -high confidence

abode-dashboard-media.s3.ap-south-1.amazonaws[.]com/nVW2lsYsYnv58 - URL- high confidence

applr-malbbal.s3.ap-northeast-2.amazonaws[.]com/7p3ow2ZH - URL- high confidence

applr-malbbal.s3.ap-northeast-2.amazonaws[.]com/UUTICMm - URL- KrustyLoader - high confidence

beansdeals-static.s3.amazonaws[.]com/UsjKy - URL- high confidence

brandnav-cms-storage.s3.amazonaws[.]com/3S1kc - URL- KrustyLoader - high confidence

bringthenoiseappnew.s3.amazonaws[.]com/pp79zE - URL- KrustyLoader - high confidence

f662135bdd8bf792a941ea222e8a1330 - MD5 file hash- KrustyLoader - high confidence

fa645f33c0e3a98436a0161b19342f78683dbd9d - SHA-1 file hash- KrustyLoader - high confidence

1d26fff4232bc64f9ab3c2b09281d932dd6afb84a24f32d772d3f7bc23d99c60 - SHA-256 file hash- KrustyLoader - high confidence

6900e844f887321f22dd606a6f2925ef - MD5 file hash- KrustyLoader - high confidence

da23dab4851df3ef7f6e5952a2fc9a6a57ab6983 - SHA-1 file hash- KrustyLoader - high confidence

1544d9392eedf7ae4205dd45ad54ec67e5ce831d2c61875806ce4c86412a4344 - SHA-256 file hash- KrustyLoader - high confidence

83a797e5b47ce6e89440c47f6e33fa08 - MD5 file hash - high confidence

a29e8f030db8990c432020441c91e4b74d4a4e16 - SHA-1 file hash - high confidence

72afde58a1bed7697c0aa7fa8b4e3b03 - MD5 file hash- high confidence

fe931adc0531fd1cb600af0c01f307da3314c5c9 - SHA-1 file hash- high confidence

b8e56de3792dbd0f4239b54cfaad7ece3bd42affa4fbbdd7668492de548b5df8 - SHA-256 file hash- KrustyLoader - high confidence

17d65a9d8d40375b5b939b60f21eb06eb17054fc - SHA-1 file hash- KrustyLoader - high confidence

8c8681e805e0ae7a7d1a609efc000c84 - MD5 file hash- KrustyLoader - high confidence

29274ca90e6dcf5ae4762739fcbadf01 - MD5 file hash- KrustyLoader - high confidence

Darktrace Model Detections

Anomalous Connection / CertUtil Requesting Non Certificate

Anomalous Connection / CertUtil to Rare Destination

Anomalous Connection / Powershell to Rare External

Anomalous File / EXE from Rare External Location

Anomalous File / Multiple EXE from Rare External Locations

Anomalous File / Internet Facing System File Download

Anomalous File / Masqueraded File Transfer (Enhanced Monitoring)

Anomalous Server Activity / New User Agent from Internet Facing System

Compliance / CertUtil External Connection

Compromise / High Priority Tunnelling to Bin Services (Enhanced Monitoring)

Compromise / Possible Tunnelling to Bin Services

Device / Initial Attack Chain Activity (Enhanced Monitoring)

Device / Suspicious Domain

Device / Internet Facing Device with High Priority Alert

Device / Large Number of Model Alerts

Device / Large Number of Model Alerts from Critical Network Device (Enhanced Monitoring)

Device / New PowerShell User Agent

Device / New User Agent

Autonomous Response Model Alerts

Antigena / Network / External Threat / Antigena Suspicious File Block

Antigena / Network / Significant Anomaly / Antigena Controlled and Model Alert

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

Antigena/ Network / External Threat / Antigena Suspicious File Block

Antigena/ Network / External Threat / Antigena Suspicious File Pattern of Life Block

Antigena/ Network / Significant Anomaly / Antigena Alerts Over Time Block

Antigena/ Network / Significant Anomaly / Antigena Controlled and Model Alert

Antigena/ Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Antigena/ Network / Significant Anomaly / Antigena Significant Server Anomaly Block

Cyber AI Analyst Incidents

Possible HTTP Command and Control

Suspicious File Download

MITRE ATT&CK Mapping

Malware - RESOURCE DEVELOPMENT - T1588.001

PowerShell - EXECUTION - T1059.001

Drive-by Compromise - INITIAL ACCESS - T1189

Ingress Tool Transfer - COMMAND AND CONTROL - T1105

Application Layer Protocol - COMMAND AND CONTROL - T1071

Exploitation of Remote Services - LATERAL MOVEMENT - T1210

Exfiltration Over Unencrypted/Obfuscated Non-C2 Protocol - EXFILTRATION - T1048.003

References

1. https://nvd.nist.gov/vuln/detail/CVE-2025-31324

2. https://www.bleepingcomputer.com/news/security/over-1-200-sap-netweaver-servers-vulnerable-to-actively-exploited-flaw/

3. https://reliaquest.com/blog/threat-spotlight-reliaquest-uncovers-vulnerability-behind-sap-netweaver-compromise/

4. https://onapsis.com/blog/active-exploitation-of-sap-vulnerability-cve-2025-31324/

5. https://www.bleepingcomputer.com/news/security/sap-fixes-suspected-netweaver-zero-day-exploited-in-attacks/

6. https://op-c.net/blog/sap-cve-2025-31324-qilin-breach/

7. https://www.forescout.com/blog/threat-analysis-sap-vulnerability-exploited-in-the-wild-by-chinese-threat-actor/

8. https://blog.eclecticiq.com/china-nexus-nation-state-actors-exploit-sap-netweaver-cve-2025-31324-to-target-critical-infrastructures

9. https://portswigger.net/burp/application-security-testing/oast

10. https://www.picussecurity.com/resource/blog/unc5221-cve-2025-22457-ivanti-connect-secure  

11. https://malpedia.caad.fkie.fraunhofer.de/details/elf.krustyloader

12. https://www.broadcom.com/support/security-center/protection-bulletin/krustyloader-backdoor

13. https://labs.withsecure.com/publications/new-krustyloader-variant-dropped-via-screenconnect-exploit

14. https://blog.eclecticiq.com/china-nexus-threat-actor-actively-exploiting-ivanti-endpoint-manager-mobile-cve-2025-4428-vulnerability

15. https://thehackernews.com/2024/01/chinese-hackers-exploiting-critical-vpn.html

16. https://www.virustotal.com/gui/file/3268f269371a81dbdce8c4eedffd8817c1ec2eadec9ba4ab043cb779c2f8a5d2

17. https://bazaar.abuse.ch/sample/3268f269371a81dbdce8c4eedffd8817c1ec2eadec9ba4ab043cb779c2f8a5d2/

18. https://www.fortinet.com/content/dam/fortinet/assets/analyst-reports/report-juicypotato-hacking-tool-discovered.pdf

19. https://www.manageengine.com/log-management/correlation-rules/detecting-sweetpotato.html

20. https://unit42.paloaltonetworks.com/rare-possible-gelsemium-attack-targets-se-asia/

21. https://assets.kpmg.com/content/dam/kpmg/in/pdf/2023/10/kpmg-ctip-gelsemium-apt-31-oct-2023.pdf

22. https://securityaffairs.com/177522/hacking/experts-warn-of-a-second-wave-of-attacks-targeting-sap-netweaver-bug-cve-2025-31324.html

23. https://www.virustotal.com/gui/file/b8e56de3792dbd0f4239b54cfaad7ece3bd42affa4fbbdd7668492de548b5df8

24. https://www.virustotal.com/gui/file/1d26fff4232bc64f9ab3c2b09281d932dd6afb84a24f32d772d3f7bc23d99c60/detection

25. https://www.virustotal.com/gui/file/1544d9392eedf7ae4205dd45ad54ec67e5ce831d2c61875806ce4c86412a4344/detection

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Signe Zaharka
Principal Cyber Analyst

More in this series

No items found.

Blog

/

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI