Blog
/
/
December 13, 2023

Defending Against Personalized Cyber Attacks

Stay informed about the latest trends in cyber threats with Darktrace experts, including how attacks are evolving and becoming more personalized.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Community
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
13
Dec 2023

Cyber-attacks are getting personal. The usual opportunistic “spray and pray” attacks that reach many would-be targets at once are still present, but as cyber defence has advanced, today’s more sophisticated campaigns take precise aim at a particular company.

Threat actors willingly put in extra time and effort to realize a bigger payday at the end of it, but developments in the tools they have at their disposal are also making targeted, personal attacks easier.

CAPTCHA-breaking AI techniques like computer vision and convolutional neural networks can be used to gather information on an organization’s attack surface, and Generative AI is able to perform OSINT collection on a specific target, or targets, within an organization. Once inside, attackers can further leverage AI to automatically tweak attacks and create novel, highly targeted threats that elude defenses.

A new white paper, The CISO’s Guide to Cyber AI, explains how CISOs and their teams can make smarter use of defensive AI and machine learning (ML) to protect today’s digital environments from these and more advanced novel threats.

Today’s threats don’t necessarily resemble past attacks  

Darktrace analytics pointed to a sharp rise in novel cyber-attacks earlier this year. Generative AI and large language model (LLM) tools continue to lower the barrier to entry for threat actors, making it easier than ever to build smarter, faster, more targeted attacks.

But while attacks are getting personal, security tools that apply AI in the wrong way won’t see these attacks coming.

Here’s why: most cyber security tools and platforms rely on a combination of supervised machine learning, deep learning, and transformers to train and inform their systems. This entails shipping your company’s data out to a large data lake housed somewhere in the cloud where it gets blended with attack data from thousands of other organizations. The resulting homogenized data set gets used to train AI systems — yours and everyone else’s — to recognize patterns of attack based on previously encountered threats.

At its conception, this was a reasonably smart way of approaching cyber security. For a long time, the assumption that today’s threats will resemble yesterday’s attacks was a valid one. But in an age where the commoditization of cyber-crime has lowered the bar-to-entry for attackers, and where Generative AI and other open-source tools are enabling personalized attacks at scale, this is no longer the case.

Darktrace has seen evidence this year of a marked rise in more sophisticated attack techniques. Between May and July this year, our Cyber AI Research Centre observed that multistage payload attacks, in which a malicious email encourages the recipient to follow a series of steps before delivering a payload or attempting to harvest sensitive information, have increased by an average of 59% across Darktrace customers. Some of this will be QR code phishing, the latest trend in attack tactics, others will include automation. The speed of these types of attacks will likely rise as greater automation and AI are adopted and applied by attackers.

This ‘historical’ approach is not able to identify threats that haven’t been seen before: attacks that use new malware, novel social engineering, and those that are targeted to your organization. There are no indicators of compromise (IoCs) to teach your system to recognize these kinds of attacks.

IoC-based defenses won’t necessarily spot strange and unusual activity by an authorized user, device, or known IP address until threat actors tip their hand — and by then it’s too late. Looking for repeat patterns works well for detecting threats that resemble past attacks, but this increasingly won’t be the case. The only way to spot unique and novel threats is to build cyber security that’s tailored to you, and that requires a whole new approach.

Smarter use of AI levels the playing field

Security teams and adversaries continue to innovate to gain the upper-hand, and the advantage of time.

Since AI equips even novice cyber criminals to mount sophisticated attacks, AI must evolve to do three things:

  • Understand and continue to learn what “normal” looks like for your unique digital environment
  • Detect and alert on any anomalous behavior the instant it occurs
  • Initiate a targeted response to contain threats and give your analysts more time, without disrupting the flow of business

Darktrace uses Self-Learning AI to understand what constitutes ‘normal’ for everyone and everything in your business, including cloud resources, identities, email accounts, endpoint devices, and even OT controllers. As the name suggests, Self-Learning AI trains itself, developing and maintaining deep understanding of ‘patterns of life’ for your business environment. Used in combination with other AI methods such as LLMs, generative AI, and supervised ML, Self-Learning AI identifies novel cyber-threats most static (backward-looking) tools miss.

The technology learns ‘on the job’ and from scratch, without relying on historical data or a massive upfront effort by your team to train the system. Probabilistic mathematics revise assumptions about behavior on a constant basis so the system keeps itself up-to-date without repeat efforts by your team.

The result is that areas of risk, as well as real-time emerging attacks, are brought to the surface – regardless of whether those attacks have been seen before in the wild.

Surgical attacks warrant surgical response

Supervised ML continues to serve a purpose, but the dawning age of novel and AI-led attacks favors a more proactive approach to securing the cloud. Tools must take greater responsibility for their own education and greater initiative via autonomous response.

What some solutions call response ultimately amounts to sending alerts and opening tickets that create more needless work for analysts. Other tools claim to automate response, but either take very limited actions like automating the process of ticket creation, or overly ambitious steps like quarantining entire systems.

Darktrace’s dynamic understanding of your environment enables a truly autonomous and precise cloud-native response. Its understanding of ‘normal’ for every user and device allows it to enforce ‘normal’ – cutting out only the malicious activity, while allowing normal business to continue functioning.

How this response will take place will depend on where Darktrace is deployed in your environment. In the network, it might mean blocking specific, anomalous connections over a certain port. In the cloud, it could mean detaching EC2 instances and applying security groups to contain only assets at risk. In email, this could be locking links or flattening attachments.

Get personal with ‘One on One’ Security

The widespread accessibility of generative AI has altered the threat landscape permanently, allowing cyber-criminals to deploy unique and personalized attacks at scale and at machine speed. In the near future, we can expect to see more novel and sophisticated phishing attacks, new automated creation of malicious code, sustained attack campaigns targeting an individual or company, and even deep fakes designed to elicit human trust.

To meet the needs of today and tomorrow, cyber security needs to leverage AI deeply and intelligently – not just using it to automate outdated historical approaches, or bolting generative AI onto existing products to keep up with the latest trend. Since 2013 Darktrace has been using AI in a fundamentally unique way: a system that learns your unique organization and understands what’s normal at a granular level. Only with this personalized understanding can you be confident in your ability as an organization to identify and shut down novel threats on the first encounter.

This form of personalized, ‘One on One’ security is a no longer a ‘nice to have’ for defenders. ‘Spray and pray’ tactics will continue to exist, but the attacks most likely to slip through the net and cause you damage are the sophisticated, the personal, and the never-before-seen. That’s what Self-Learning AI was built for – learning your business to deliver personalized cyber security, meeting every attack one-on-one.

The CISO’s Guide to Cyber AI overviews the differences between common AI approaches in cyber security and offers a high-level checklist for choosing the ideal solution for stopping attacks — including new novel threats.  To learn more about making the smartest use of AI to stop novel and targeted cloud attacks, download the guide today.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Community

More in this series

No items found.

Blog

/

Identity

/

July 3, 2025

Top Eight Threats to SaaS Security and How to Combat Them

Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

/

July 2, 2025

Pre-CVE Threat Detection: 10 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability

Default blog imageDefault blog image

Vulnerabilities are weaknesses in a system that can be exploited by malicious actors to gain unauthorized access or to disrupt normal operations. Common Vulnerabilities and Exposures (or CVEs) are a list of publicly disclosed cybersecurity vulnerabilities that can be tracked and mitigated by the security community.

When a vulnerability is discovered, the standard practice is to report it to the vendor or the responsible organization, allowing them to develop and distribute a patch or fix before the details are made public. This is known as responsible disclosure.

With a record-breaking 40,000 CVEs reported for 2024 and a predicted higher number for 2025 by the Forum for Incident Response and Security Teams (FIRST) [1], anomaly-detection is essential for identifying these potential risks. The gap between exploitation of a zero-day and disclosure of the vulnerability can sometimes be considerable, and retroactively attempting to identify successful exploitation on your network can be challenging, particularly if taking a signature-based approach.

Detecting threats without relying on CVE disclosure

Abnormal behaviors in networks or systems, such as unusual login patterns or data transfers, can indicate attempted cyber-attacks, insider threats, or compromised systems. Since Darktrace does not rely on rules or signatures, it can detect malicious activity that is anomalous even without full context of the specific device or asset in question.

For example, during the Fortinet exploitation late last year, the Darktrace Threat Research team were investigating a different Fortinet vulnerability, namely CVE 2024-23113, for exploitation when Mandiant released a security advisory around CVE 2024-47575, which aligned closely with Darktrace’s findings.

Retrospective analysis like this is used by Darktrace’s threat researchers to better understand detections across the threat landscape and to add additional context.

Below are ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

Trends in pre-cve exploitation

Often, the disclosure of an exploited vulnerability can be off the back of an incident response investigation related to a compromise by an advanced threat actor using a zero-day. Once the vulnerability is registered and publicly disclosed as having been exploited, it can kick off a race between the attacker and defender: attack vs patch.

Nation-state actors, highly skilled with significant resources, are known to use a range of capabilities to achieve their target, including zero-day use. Often, pre-CVE activity is “low and slow”, last for months with high operational security. After CVE disclosure, the barriers to entry lower, allowing less skilled and less resourced attackers, like some ransomware gangs, to exploit the vulnerability and cause harm. This is why two distinct types of activity are often seen: pre and post disclosure of an exploited vulnerability.

Darktrace saw this consistent story line play out during several of the Fortinet and PAN OS threat actor campaigns highlighted above last year, where nation-state actors were seen exploiting vulnerabilities first, followed by ransomware gangs impacting organizations [2].

The same applies with the recent SAP Netweaver exploitations being tied to a China based threat actor earlier this spring with subsequent ransomware incidents being observed [3].

Autonomous Response

Anomaly-based detection offers the benefit of identifying malicious activity even before a CVE is disclosed; however, security teams still need to quickly contain and isolate the activity.

For example, during the Ivanti chaining exploitation in the early part of 2025, a customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device.

This pre-CVE detection and response by Darktrace occurred 11 days before any public disclosure, demonstrating the value of an anomaly-based approach.

In some cases, customers have even reported that Darktrace stopped malicious exploitation of devices several days before a public disclosure of a vulnerability.

For example, During the ConnectWise exploitation, a customer informed the team that Darktrace had detected malicious software being installed via remote access. Upon further investigation, four servers were found to be impacted, while Autonomous Response had blocked outbound connections and enforced patterns of life on impacted devices.

Conclusion

By continuously analyzing behavioral patterns, systems can spot unusual activities and patterns from users, systems, and networks to detect anomalies that could signify a security breach.

Through ongoing monitoring and learning from these behaviors, anomaly-based security systems can detect threats that traditional signature-based solutions might miss, while also providing detailed insights into threat tactics, techniques, and procedures (TTPs). This type of behavioral intelligence supports pre-CVE detection, allows for a more adaptive security posture, and enables systems to evolve with the ever-changing threat landscape.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO), Emma Fougler (Global Threat Research Operations Lead), Ryan Traill (Analyst Content Lead)

References and further reading:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

Related Darktrace blogs:

*Self-reported by customer, confirmed afterwards.

**Updated January 2024 blog now reflects current findings

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI