Blog
/
Network
/
April 26, 2023

Gozi ISFB Malware Detection Insights and Analysis

Uncover how Gozi ISFB operates and how Darktrace’s detection capabilities help secure your systems against this versatile malware.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Torres
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
26
Apr 2023

Mirroring the overall growth of the cybersecurity landscape and the advancement of security tool capabilities, threat actors are continuously forced to keep pace. Today, threat actors are bringing novel malware into the wild, creating new attack vectors, and finding ways to avoid the detection of security tools. 

One notable example of a constantly adapting type of malware can be seen with banking trojans, a type of malware designed to steal confidential information, such as banking credentials, used by attackers for financial gain. Gozi-ISFB is a widespread banking trojan that has previously been referred to as ‘the malware with a thousand faces’ and, as it name might suggest, has been known under various names such as Gozi, Ursnif, Papras and Rovnix to list a few.

Between November 2022 and January 2023, a rise in Gozi-ISFB malware related activity was observed across Darktrace customer environments and was investigated by the Darktrace Threat Research team. Leveraging its Self-Learning AI, Darktrace was able to identify activity related to this banking trojan, regardless of the attack vectors or delivery methods utilized by threat actors.

We have moderate to high confidence that the series of activities observed is associated with Gozi-ISFB malware and high confidence in the indicators of compromise identified which are related to the post-compromise activities from Gozi-ISFB malware. 

Gozi-ISFB Background

The Gozi-ISFB malware was first observed in 2011, stemming from the source code of another family of malware, Gozi v1, which in turn borrowed source code from the Ursnif malware strain.  

Typically, the initial access payloads of Gozi-ISFB would require an endpoint to enable a macro on their device, subsequently allowing a pre-compiled executable file (.exe) to be gathered from an attacker-controlled server, and later executed on the target device.

However, researchers have recently observed Gozi-ISFB actors using additional and more advanced capabilities to gain access to organizations networks. These capabilities range from credential harvest, surveilling user keystrokes, diverting browser traffic from banking websites, remote desktop access, and the use of domain generation algorithms (DGA) to create command-and-control (C2) domains to avoid the detection and blocking of traditional security tools. 

Ultimately, the goal of Gozi-ISFB malware is to gather confidential information from infected devices by connecting to C2 servers and installing additional malware modules on the network. 

Darktrace Coverage of Gozi-ISFB 

Unlike traditional security approaches, Darktrace DETECT/Network™ can identify malicious activity because Darktrace models build an understanding of a device’s usual pattern of behavior, rather than using a static list of indicators of compromise (IoCs) or rules and signatures. As such, Darktrace is able to instantly detect compromised devices that deviate from their expected behavioral patterns, engaging in activity such as unusual SMB connections or connecting to newly created malicious endpoints or C2 infrastructure. In the event that Darktrace detects malicious activity, it would automatically trigger an alert, notifying the customer of an ongoing security concern. 

Regarding the Gozi-ISFB attack process, initial attack vectors commonly include targeted phishing campaigns, where the recipient would receive an email with an attached Microsoft Office document containing macros or a Zip archive file. Darktrace frequently observes malicious emails like this across the customer base and is able to autonomously detect and action them using Darktrace/Email™. In the following cases, the clients who had Darktrace/Email did not have evidence of compromise through their corporate email infrastructure, suggesting devices were likely compromised via the access of personal email accounts. In other cases, the customers did not have Darktrace/Email enabled on their networks.

Upon downloading and opening the malicious attachment included in the phishing email, the payload subsequently downloads an additional .exe or dynamic link library (DLL) onto the device. Following this download, the malware will ultimately begin to collect sensitive data from the infected device, before exfiltrating it to the C2 server associated with Gozi-ISFB. Darktrace was able to demonstrate and detect the retrieval of Gozi-ISFB malware, as well as subsequent malicious communication on multiple customer environments. 

In some attack chains observed, the infected device made SMB connections to the rare external endpoint ’62.173.138[.]28’ via port 445. Darktrace recognized that the device used unusual credentials for this destination endpoint and further identified it performing SMB reads on the share ‘\\62.173.138[.]28\Agenzia’. Darktrace also observed that the device downloaded the executable file ‘entrat.exe’ from this connection as can be seen in Figure 1.

Figure 1: Model breach event log showing an infected device making SMB read actions on the share ‘\\62.173.138[.]28\Agenzia’. Darktrace observed the device downloading the executable file ‘entrat.exe’ from this connection.

Subsequently, the device performed a separate SMB login to the same external endpoint using a credential identical to the device's name. Shortly after, the device performed a SMB directory query from the root share drive for the file path to the same endpoint. 

Figure 2:SMB directory query from the root share drive for the file path to the same endpoint, ’62.173.138[.]28’.

In Gozi-ISFB compromises investigated by the Threat Research team, Darktrace commonly observed model breaches for ‘Multiple HTTP POSTs to Rare Hostname’ and the use of the Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 10.0; Win64; x64)’ user agent. 

Devices were additionally observed making external connections over port 80 (TCP, HTTP) to endpoints associated with Gozi-ISFB. Regarding these connections, C2 communication was observed used configurations of URI path and resource file extension that claimed to be related to images within connections that were actually GET or POST request URIs. This is a commonly used tactic by threat actors to go under the radar and evade the detection of security teams.  

An example of this type of masqueraded URI can be seen below:

In another similar example investigated by the Threat Research team, Darktrace detected similar external connectivity associated with Gozi-ISFB malware. In this case, DETECT identified external connections to two separate hostnames, namely ‘gameindikdowd[.]ru’ and ‘jhgfdlkjhaoiu[.]su’,  both of which have been associated to Gozi-ISFB by OSINT sources. This specific detection included HTTP beaconing connections to endpoint, gameindikdowd[.]ru .

Details observed from this event: 

Destination IP: 134.0.118[.]203

Destination port: 80

ASN: AS197695 Domain names registrar REG.RU, Ltd

User agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 10.0; Win64; x64

The same device later made anomalous HTTP POST requests to a known Gozi-ISFB endpoint, jhgfdlkjhaoiu[.]su. 

Details observed:

Destination port: 80

ASN: AS197695 Domain names registrar REG.RU, Ltd

User agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 10.0; Win64; x64

Figure 3: Packet Capture (PCAP) with the device conducting anomalous HTTP POST requests to a Gozi-ISFB related IOC, ‘jhgfdlkjhaoiu[.]su’.

Conclusions 

With constantly changing attack infrastructure and new methods of exploitation tested and leveraged hour upon hour, it is critical for security teams to employ tools that help them stay ahead of the curve to avoid critical damage from compromise.  

Faced with a notoriously adaptive malware strain like Gozi-ISFB, Darktrace demonstrated its ability to autonomously detect malicious activity based upon more than just known IoCs and attack vectors. Despite the multitude of different attack vectors utilized by threat actors, Darktrace was able to detect Gozi-ISFB activity at various stages of the kill chain using its anomaly-based detection to identify unusual activity or deviations from normal patterns of life. Using its Self-Learning AI, Darktrace successfully identified infected devices and brought them to the immediate attention of customer security teams, ultimately preventing infections from leading to further compromise.  

The Darktrace suite of products, including DETECT/Network, is uniquely placed to offer customers an unrivaled level of network security that can autonomously identify and respond to arising threats against their networks in real time, preventing suspicious activity from leading to damaging network compromises.

Credit to: Paul Jennings, Principal Analyst Consultant and the Threat Research Team

Appendices

List of IOCs

134.0.118[.]203 - IP Address - Gozi-ISFB C2 Endpoint

62.173.138[.]28 - IP Address - Gozi-ISFB  C2 Endpoint

45.130.147[.]89 - IP Address - Gozi-ISFB  C2 Endpoint

94.198.54[.]97 - IP Address - Gozi-ISFB C2 Endpoint

91.241.93[.]111 - IP Address - Gozi-ISFB  C2 Endpoint

89.108.76[.]56 - IP Address - Gozi-ISFB  C2 Endpoint

87.106.18[.]141 - IP Address - Gozi-ISFB  C2 Endpoint

35.205.61[.]67 - IP Address - Gozi-ISFB  C2 Endpoint

91.241.93[.]98 - IP Address - Gozi-ISFB  C2 Endpoint

62.173.147[.]64 - IP Address - Gozi-ISFB C2 Endpoint

146.70.113[.]161 - IP Address - Gozi-ISFB  C2 Endpoint 

iujdhsndjfks[.]ru - Hostname - Gozi-ISFB C2 Hostname

reggy505[.]ru - Hostname - Gozi-ISFB  C2 Hostname

apr[.]intoolkom[.]at - Hostname - Gozi-ISFB  C2 Hostname

jhgfdlkjhaoiu[.]su - Hostname - Gozi-ISFB  C2 Hostname

gameindikdowd[.]ru - Hostname - Gozi-ISFB  Hostname

chnkdgpopupser[.]at - Hostname – Gozi-ISFB C2 Hostname

denterdrigx[.]com - Hostname – Gozi-ISFB C2 Hostname

entrat.exe - Filename – Gozi-ISFB Related Filename

Darktrace Model Coverage

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

Anomalous Connection / Posting HTTP to IP Without Hostname

Anomalous Connection / New User Agent to IP Without Hostname

Compromise / Agent Beacon (Medium Period)

Anomalous File / Application File Read from Rare Endpoint

Device / Suspicious Domain

Mitre Attack and Mapping

Tactic: Application Layer Protocol: Web Protocols

Technique: T1071.001

Tactic: Drive-by Compromise

Technique: T1189

Tactic: Phishing: Spearphishing Link

Technique: T1566.002

Model Detection

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname - T1071.001

Anomalous Connection / Posting HTTP to IP Without Hostname - T1071.001

Anomalous Connection / New User Agent to IP Without Hostname - T1071.001

Compromise / Agent Beacon (Medium Period) - T1071.001

Anomalous File / Application File Read from Rare Endpoint - N/A

Device / Suspicious Domain - T1189, T1566.002

References

https://threatfox.abuse.ch/browse/malware/win.isfb/

https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-216a

https://www.fortinet.com/blog/threat-research/new-variant-of-ursnif-continuously-targeting-italy#:~:text=Ursnif%20(also%20known%20as%20Gozi,Italy%20over%20the%20past%20year

https://medium.com/csis-techblog/chapter-1-from-gozi-to-isfb-the-history-of-a-mythical-malware-family-82e592577fef

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Torres
Cyber Analyst

More in this series

No items found.

Blog

/

/

September 25, 2025

Announcing Unified Real-Time CDR and Automated Investigations to Transform Cloud Security Operations

Default blog imageDefault blog image

Fragmented Tools are Failing SOC Teams in the Cloud Era

The cloud has transformed how businesses operate, reshaping everything from infrastructure to application delivery. But cloud security has not kept pace. Most tools still rely on traditional models of logging, policy enforcement, and posture management; approaches that provide surface-level visibility but lack the depth to detect or investigate active attacks.

Meanwhile, attackers are exploiting vulnerabilities, delivering cloud-native exploits, and moving laterally in ways that posture management alone cannot catch fast enough. Critical evidence is often missed, and alerts lack the forensic depth SOC analysts need to separate noise from true risk. As a result, organizations remain exposed: research shows that nearly nine in ten organizations have suffered a critical cloud breach despite investing in existing security tools [1].

SOC teams are left buried in alerts without actionable context, while ephemeral workloads like containers and serverless functions vanish before evidence can be preserved. Point tools for logging or forensics only add complexity, with 82% of organizations using multiple platforms to investigate cloud incidents [2].

The result is a broken security model: posture tools surface risks but don’t connect them to active attacker behaviors, while investigation tools are too slow and fragmented to provide timely clarity. Security teams are left reactive, juggling multiple point solutions and still missing critical signals. What’s needed is a unified approach that combines real-time detection and response for active threats with automated investigation and cloud posture management in a single workflow.

Just as security teams once had to evolve beyond basic firewalls and antivirus into network and endpoint detection, response, and forensics, cloud security now requires its own next era: one that unifies detection, response, and investigation at the speed and scale of the cloud.

A Powerful Combination: Real-Time CDR + Automated Cloud Forensics

Darktrace / CLOUD now uniquely unites detection, investigation, and response into one workflow, powered by Self-Learning AI. This means every alert, from any tool in your stack, can instantly become actionable evidence and a complete investigation in minutes.

With this release, Darktrace / CLOUD delivers a more holistic approach to cloud defense, uniting real-time detection, response, and investigation with proactive risk reduction. The result is a single solution that helps security teams stay ahead of attackers while reducing complexity and blind spots.

  • Automated Cloud Forensic Investigations: Instantly capture and analyze volatile evidence from cloud assets, reducing investigation times from days to minutes and eliminating blind spots
  • Enhanced Cloud-Native Threat Detection: Detect advanced attacker behaviors such as lateral movement, privilege escalation, and command-and-control in real time
  • Enhanced Live Cloud Topology Mapping: Gain continuous insight into cloud environments, including ephemeral workloads, with live topology views that simplify investigations and expose anomalous activity
  • Agentless Scanning for Proactive Risk Reduction: Continuously monitor for misconfigurations, vulnerabilities, and risky exposures to reduce attack surface and stop threats before they escalate.

Automated Cloud Forensic Investigations

Darktrace / CLOUD now includes capabilities introduced with Darktrace / Forensic Acquisition & Investigation, triggering automated forensic acquisition the moment a threat is detected. This ensures ephemeral evidence, from disks and memory to containers and serverless workloads can be preserved instantly and analyzed in minutes, not days. The integration unites detection, response, and forensic investigation in a way that eliminates blind spots and reduces manual effort.

Figure 1: Easily view Forensic Investigation of a cloud resource within the Darktrace / CLOUD architecture map

Enhanced Cloud-Native Threat Detection

Darktrace / CLOUD strengthens its real-time behavioral detection to expose early attacker behaviors that logs alone cannot reveal. Enhanced cloud-native detection capabilities include:

• Reconnaissance & Discovery – Detects enumeration and probing activity post-compromise.

• Privilege Escalation via Role Assumption – Identifies suspicious attempts to gain elevated access.

• Malicious Compute Resource Usage – Flags threats such as crypto mining or spam operations.

These enhancements ensure active attacks are detected earlier, before adversaries can escalate or move laterally through cloud environments.

Figure 2: Cyber AI Analyst summary of anomalous behavior for privilege escalation and establishing persistence.

Enhanced Live Cloud Topology Mapping

New enhancements to live topology provide real-time mapping of cloud environments, attacker movement, and anomalous behavior. This dynamic visibility helps SOC teams quickly understand complex environments, trace attack paths, and prioritize response. By integrating with Darktrace / Proactive Exposure Management (PEM), these insights extend beyond the cloud, offering a unified view of risks across networks, endpoints, SaaS, and identity — giving teams the context needed to act with confidence.

Figure 3: Enhanced live topology maps unify visibility across architectures, identities, network connections and more.

Agentless Scanning for Proactive Risk Reduction

Darktrace / CLOUD now introduces agentless scanning to uncover malware and vulnerabilities in cloud assets without impacting performance. This lightweight, non-disruptive approach provides deep visibility into cloud workloads and surfaces risks before attackers can exploit them. By continuously monitoring for misconfigurations and exposures, the solution strengthens posture management and reduces attack surface across hybrid and multi-cloud environments.

Figure 4: Agentless scanning of cloud assets reveals vulnerabilities, which are prioritized by severity.

Together, these capabilities move cloud security operations from reactive to proactive, empowering security teams to detect novel threats in real time, reduce exposures before they are exploited, and accelerate investigations with forensic depth. The result is faster triage, shorter MTTR, and reduced business risk — all delivered in a single, AI-native solution built for hybrid and multi-cloud environments.

Accelerating the Evolution of Cloud Security

Cloud security has long been fragmented, forcing teams to stitch together posture tools, log-based monitoring, and external forensics to get even partial coverage. With this release, Darktrace / CLOUD delivers a holistic, unified approach that covers every stage of the cloud lifecycle, from proactive posture management and risk identification to real-time detection, to automated investigation and response.

By bringing these capabilities together in a single AI-native solution, Darktrace is advancing cloud security beyond incremental change and setting a new standard for how organizations protect their hybrid and multi-cloud environments.

With Darktrace / CLOUD, security teams finally gain end-to-end visibility, response, and investigation at the speed of the cloud, transforming cloud defense from fragmented and reactive to unified and proactive.

[related-resource]

Sources: [1], [2] Darktrace Report: Organizations Require a New Approach to Handle Investigations in the Cloud

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace

Blog

/

/

September 25, 2025

Introducing the Industry’s First Truly Automated Cloud Forensics Solution

Default blog imageDefault blog image

Why Cloud Investigations Fail Today

Cloud investigations have become one of the hardest problems in modern cybersecurity. Traditional DFIR tools were built for static, on-prem environments, rather than dynamic and highly scalable cloud environments, containing ephemeral workloads that disappear in minutes. SOC analysts are flooded with cloud security alerts with one-third lacking actionable data to confirm or dismiss a threat[1], while DFIR teams waste 3-5 days requesting access and performing manual collection, or relying on external responders.

These delays leave organizations vulnerable. Research shows that nearly 90% of organizations suffer some level of damage before they can fully investigate and contain a cloud incident [2]. The result is a broken model: alerts are closed without a complete understanding of the threat due to a lack of visibility and control, investigations drag on, and attackers retain the upper hand.

For SOC teams, the challenge is scale and clarity. Analysts are inundated with alerts but lack the forensic depth to quickly distinguish real threats from noise. Manual triage wastes valuable time, creates alert fatigue, and often forces teams to escalate or dismiss incidents without confidence — leaving adversaries with room to maneuver.

For DFIR teams, the challenge is depth and speed. Traditional forensics tools were built for static, on-premises environments and cannot keep pace with ephemeral workloads that vanish in minutes. Investigators are left chasing snapshots, requesting access from cloud teams, or depending on external responders, leading to blind spots and delayed response.

That’s why we built Darktrace / Forensic Acquisition & Investigation, the first automated forensic solution designed specifically for the speed, scale, and complexities of the cloud. It addresses both sets of challenges by combining automated forensic evidence capture, attacker timeline reconstruction, and cross-cloud scale. The solution empowers SOC analysts with instant clarity and DFIR teams with forensic depth, all in minutes, not days. By leveraging the very nature of the cloud, Darktrace makes these advanced capabilities accessible to security teams of all sizes, regardless of expertise or resources.

Introducing Automated Forensics at the Speed and Scale of Cloud

Darktrace / Forensic Acquisition & Investigation transforms cloud investigations by capturing, processing, and analyzing forensic evidence of cloud workloads, instantly, even from time-restricted ephemeral resources. Triggered by a detection from any cloud security tool, the entire process is automated, providing accurate root cause analysis and deep insights into attacker behavior in minutes rather than days or weeks. SOC and DFIR teams no longer have to rely on manual processes, snapshots, or external responders, they can now leverage the scale and elasticity of the cloud to accelerate triage and investigations.

Seamless Integration with Existing Detection Tools

Darktrace / Forensic Acquisition & Investigation does not require customers to replace their detection stack. Instead, it integrates with cloud-native providers, XDR platforms, and SIEM/SOAR tools, automatically initiating forensic capture whenever an alert is raised. This means teams can continue leveraging their existing investments while gaining the forensic depth required to validate alerts, confirm root cause, and accelerate response.

Most importantly, the solution is natively integrated with Darktrace / CLOUD, turning real-time detections of novel attacker behaviors into full forensic investigations instantly. When Darktrace / CLOUD identifies suspicious activity such as lateral movement, privilege escalation, or abnormal usage of compute resources, Darktrace / Forensic Acquisition & Investigation automatically preserves the underlying forensic evidence before it disappears. This seamless workflow unites detection, response, and investigation in a way that eliminates gaps, accelerates triage, and gives teams confidence that every critical cloud alert can be investigated to completion.

Figure 1: Integration with Darktrace / CLOUD – this example is showing the ability to pivot into the forensic investigation associated with a compromised cloud asset

Automated Evidence Collection Across Hybrid and Multi-Cloud

The solution provides automated forensic acquisition across AWS, Microsoft Azure, GCP, and on-prem environments. It supports both full volume capture, creating a bit-by-bit copy of an entire storage device for the most comprehensive preservation of evidence, and triage collection, which prioritizes speed by gathering only the most essential forensic artifacts such as process data, logs, network connections, and open file contents. This flexibility allows teams to strike the right balance between speed and depth depending on the investigation at hand.

Figure 2: Ability to acquire forensic data from Cloud, SaaS and on-prem environments

Automated Investigations, Root Cause Analysis and Attacker Timelines

Once evidence is collected, Darktrace applies automation to reconstruct attacker activity into a unified timeline. This includes correlating commands, files, lateral movement, and network activity into a single investigative view enriched with custom threat intelligence such as IOCs. Detailed investigation reporting including an investigation summary, an overview of the attacker timeline, and key events. Analysts can pivot into detailed views such as the filesystem view, traversing directories or inspecting file content, or filter and search using faceted options to quickly narrow the scope of an investigation.

Figure 3: Automated Investigation view surfacing the most significant attacker activity, which is contextualized with Alarm information

Forensics for Containers and Ephemeral Assets

Investigating containers and serverless workloads has historically been one of the hardest challenges for DFIR teams, as these assets often disappear before evidence can be preserved. Darktrace / Forensic Acquisition & Investigation captures forensic evidence across managed Kubernetes cloud services, even from distroless or no-shell containers, AWS ECS and other environments, ensuring that ephemeral activity is no longer a blind spot. For hybrid organizations, this extends to on-premises Kubernetes and OpenShift deployments, bringing consistency across environments.

Figure 4: Container investigations – this example is showing the ability to capture containers from managed Kubernetes cloud services

SaaS Log Collection for Modern Investigations

Beyond infrastructure-level data, the solution collects logs from SaaS providers such as Microsoft 365, Entra ID, and Google Workspace. This enables investigations into common attack types like business email compromise (BEC), account takeover (ATO), and insider threats — giving teams visibility into both infrastructure-level and SaaS-driven compromise from a single platform.

Figure 5: Ability to import logs from SaaS providers including Microsoft 365, Entra ID, and Google Workspace

Proactive Vulnerability and Malware Discovery

Finally, the solution surfaces risk proactively with vulnerability and malware discovery for Linux-based cloud resources. Vulnerabilities are presented in a searchable table and correlated with the attacker timeline, enabling teams to quickly understand not just which packages are exposed, but whether they have been targeted or exploited in the context of an incident.

Figure 6: Vulnerability data with pivot points into the attacker timeline

Cloud-Native Scale and Performance

Darktrace / Forensic Acquisition & Investigation uses a cloud-native parallel processing architecture that spins up compute resources on demand, ensuring that investigations run at scale without bottlenecks. Detailed reporting and summaries are automatically generated, giving teams a clear record of the investigation process and supporting compliance, litigation readiness, and executive reporting needs.

Scalable and Flexible Deployment Options

Every organization has different requirements for speed, control, and integration. Darktrace / Forensic Acquisition & Investigation is designed to meet those needs with two flexible deployment models.

  • Self-Hosted Virtual Appliance delivers deep integration and control across hybrid environments, preserving forensic data for compliance and litigation while scaling to the largest enterprise investigations.
  • SaaS-Delivered Deployment provides fast time-to-value out of the box, enabling automated forensic response without requiring deep cloud expertise or heavy setup.

Both models are built to scale across regions and accounts, ensuring organizations of any size can achieve rapid value and adapt the solution to their unique operational and compliance needs. This flexibility makes advanced cloud forensics accessible to every security team — whether they are optimizing for speed, integration depth, or regulatory alignment

Delivering Advanced Cloud Forensics for Every Team

Until now, forensic investigations were slow, manual, and reserved for only the largest organizations with specialized DFIR expertise. Darktrace / Forensic Acquisition & Investigation changes that by leveraging the scale and elasticity of the cloud itself to automate the entire investigation process. From capturing full disk and memory at detection to reconstructing attacker timelines in minutes, the solution turns fragmented workflows into streamlined investigations available to every team.

Whether deployed as a SaaS-delivered service for fast time-to-value or as a self-hosted appliance for deep integration, Darktrace / Forensic Acquisition & Investigation provides the features that matter most: automated evidence capture, cross-cloud investigations, forensic depth for ephemeral assets, and root cause clarity without manual effort.

With Darktrace / Forensic Acquisition & Investigation, what once took days now takes minutes. Now, forensic investigations in the cloud are faster, more scalable, and finally accessible to every security team, no matter their size or expertise.

[related-resource]

Sources: [1], [2] Darktrace Report: Organizations Require a New Approach to Handle Investigations in the Cloud

Additional Resources

Continue reading
About the author
Paul Bottomley
Director of Product Management | Darktrace
Your data. Our AI.
Elevate your network security with Darktrace AI