ブログ
/
/
September 20, 2022

Modern Extortion: Detecting Data Theft From the Cloud

Darktrace highlights a handful of data theft incidents on shared cloud platforms, showing that cloud computing can be a vulnerable place for modern extortion.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adrianne Marques
Senior Research Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
20
Sep 2022

Ransomware Industry

The ransomware industry has benefitted from a number of factors in recent years: inadequate cyber defenses, poorly regulated cryptocurrency markets, and geopolitical tensions have allowed gangs to extort increasingly large ransoms while remaining sheltered from western law enforcement [1]. However, one of the biggest success stories of the ransomware industry has been the adaptability and evolution of attacker TTPs (tactics, techniques and procedures). The WannaCry and NotPetya attacks of 2017 popularized a form of ransomware which used encryption algorithms to hold data to ransom in exchange for a decryption key. Last year in 2021, almost all ransomware strains evolved to use double extortion tactics: holding stolen data to ransom as well as encrypted data [2]. Now, some ransomware gangs have dropped encryption entirely, and are using data theft as their sole means of extortion. 

Using data theft for extortion is not new. In 2020 the Finnish psychotherapy center Vastaamo had over 40,000 patient records stolen. Impacted patients were told that their psychiatric transcripts would be published online if they failed to pay a Bitcoin ransom. [3]. A later report by BlackFog in May 2021 predicted data theft extortion would become one of the key emerging cybersecurity trends that year [4]. Adoption of offline back-ups and endpoint detection had made encryption harder, while a large-scale move to Cloud and SaaS platforms offered new vectors for data theft. By moving from data encryption to data exfiltration, ransomware attackers pivoted from targeting data availability within the CIA triad (Confidentiality, Integrity, Availability) to threatening data confidentiality.

In November 2021, Darktrace detected a data theft incident following the compromise of two SaaS accounts within an American tech customer’s Office365 environment. The client was a longstanding user of Darktrace DETECT/Network, and was in the process of expanding their coverage by trialing Darktrace DETECT+RESPOND/ Apps + Cloud.

Attack Overview

On November 23rd 2021, an Ask the Expert (ATE) ticket was raised prompting investigation into a breached SaaS model, ‘SaaS / Access / Unusual External Source for SaaS Credential Use’, and the activities of a user (censored as UserA) over the prior week.

1. Office365: UserA 

The account UserA had been logging in from an unusual location in Nigeria on November 21st. At the time of the incident there were no flags of malicious activity from this IP in widely used OSINT sources. It is also highly probable the attacker was not located in Nigeria but using Nigerian infrastructure in order to hide their true location. Regardless, the location of the login from this IP and ASN was considered highly unusual for users within the customer’s digital estate. The specific user in question most commonly accessed their account from IP ranges located in the US.

Figure 1: In the Geolocation tab of the External Sites Summary on the SaaS Console, UserA was seen logging in from Nigeria when previous logins were exclusively from USA

Further investigation revealed an additional anomaly in the Outlook Web activity of UserA. The account was using the Firefox browser to access their account for the first time in at least 4 weeks (the maximum period for which the customer stored such data). SaaS logs detailing the access of confidential folders and other suspicious actions were identified using the Advanced Search (AS) query:

@fields.saas_actor:"UserA@[REDACTED]" AND @fields.saas_software:"Firefox"

Most actions were ‘MailItemsAccessed’ events originating from IPs located in Nigeria [5,6] and one other potentially malicious IP located in the US [7].

‘MailItemsAccessed’ is part of the new Advanced Audit functionality from Microsoft and can be used to determine when email data is accessed by mail protocols and clients. A bind mail access type denotes an individual access to an email message [8]. 

Figure 2: AS logs shows UserA had not used Firefox to access Office365 for at least 4 weeks prior to the unusual login on the 21st November

Below are details of the main suspicious SaaS activities: 

·      Time: 2021-11-21 09:05:25 - 2021-11-22 16:57:39 UTC

·      SaaS Actor: UserA@[REDACTED]

·      SaaS Service: Office365

·      SaaS Service Product: Exchange

·      SaaS Software: Firefox

·      SaaS Office365 Parent Folders:

          o   \Accounts/Passwords
          o   \Invoices
          o   \Sent Items
          o   \Inbox
          o   \Recoverable Items\Deletions

·      SaaS Event:

          o   MailItemsAccessed
          o   UserLoggedIn
          o   Update

·      SaaS Office365 Mail Access Type: Bind (47 times)

·      Source IP addresses:

          o   105.112.59[.]83
          o   105.112.36[.]212
          o   154.6.17[.]16
          o   45.130.83[.]129

·      SaaS User Agents: 

          o   Client=OWA;Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:80.0) Gecko/20100101 Firefox/80.0;
          o   Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:80.0) Gecko/20100101 Firefox/80.0

·      Total SaaS logs: 57 

At the start of the month on the 5th November, the user had also been seen logging in from a potentially malicious endpoint [9] in Europe, performing ‘MailItemsAccessed’ and ‘Updates’ events with subjects and a resource location related to invoices and wire transfers from the Sent items folder. This suggests the initial compromise had been earlier in the month, giving the threat actor time to make preparations for the final stages of the attack.

Figure 3: Event log showing the activity of UserA from IP 45.135.187[.]108 

2. Office365: UserB 

Looking into the model breach ‘SaaS / Access / Suspicious Credential Use And Login User-Agent’, it was seen that a second account, UserB, was also observed logging in from a rare and potentially malicious location in Bangladesh [7]. Similar to UserA, this user had previously logged in exclusively from the USA, and no other accounts within the digital estate had been observed interacting with the Bangladeshi IP address. The login event appeared to bypass MFA (Multi-factor Authentication) and a suspicious user agent, BAV2ROPC, was used. Against misconfigured accounts, this Microsoft user agent is commonly used by attackers to bypass MFA on Office365. It targets Exchange’s Basic Authentication (normally used in POP3/IMAP4 conditions) and results in an OAuth flow which circumvents the additional password security brought by MFA [10].  

During the session, additional resources were accessed which appear to be associated with bill and invoice payments. In addition, on the 4th November, two new suspicious email rules named “..” were created from rare IPs (107.10.56[.]48 and 76.189.202[.]66). This type of behavior is commonly seen during SaaS compromises to delete or forward emails. Typically, an email rule created by a human user will be named to reflect the change being made, such as ‘Move emails from Legal to Urgent’. In contrast, malicious email rules are often short and undescriptive. The rule “..” is likely to blend in without arousing suspicion, while also being easy for the attacker to create and remember. 

Details of these rule changes are as follows:

·      Time: 2021-11-04 13:25:06, 2021-11-05 15:50:00 [UTC]
·      SaaS Service: Office365
·      SaaS Service Product: Exchange
·      SaaS Status Message: True
·      SaaS Source IP addresses: 107.10.56[.]48, 76.189.202[.]66
·      SaaS Account Name: O365
·      SaaS Actor: UserB@[REDACTED]
·      SaaS Event: SetInboxRule
·      SaaS Office365 Modified Property Names:
          o   AlwaysDeleteOutlookRulesBlob, Force, Identity, MoveToFolder, Name, FromAddressContainsWords, StopProcessingRules
          o   AlwaysDeleteOutlookRulesBlob, Force, Identity, Name, FromAddressContainsWords, StopProcessingRules
·      SaaS Resource Name: .. 

During cloud account compromises, attackers will often use sync operations to download emails to their local email client. During the operations, these clients typically download a large set of mail items from the cloud to a local computer. If the attacker is able to sync all mail items to their mail client, the entire mailbox can be compromised. The attacker is able to disconnect from the account and review and search the email without generating additional event logs. 

Both accounts UserA and UserB were observed using ‘MailItemsAccessed’ sync operations between the 1st and 23rd November when this attack occurred. However, based on the originating IP of the sync operations, the activity is likely to have been initiated by the legitimate, US-based users. Once the security team were able to confirm the events were expected and legitimate, they could establish that the contents of the mailbox were not a part of the data breach. 

Accomplish Mission

After gaining access to the Office365 accounts, sensitive data was downloaded by the attackers to their local system. Either on or before 14th December, the attacker had seemingly uploaded the documents onto a data leak website. In total, 130MB of data had been made available for download in two separate packages. The packages included audit and accounting financial documents, with file extensions such as DB, XLSX, and PDF.

Figure 4: The two data packages uploaded by the attacker and the extracted contents

In a sample of past SaaS activity of UserA, the subject and attachments appear related to the ‘OUTSTANDING PREPAY WIRES 2021’ excel document found from the data leak website in Figure 4, suggesting a further possibility that the account was associated with the leaked data. 

Historic SaaS activity associated with UserA: 

·      Time: 2021-11-05 21:21:18 [UTC]
·      SaaS Office365 Logon Type: Owner
·      Protocol: OFFICE365
·      SaaS Account Name: O365
·      SaaS Actor: UserA@[REDACTED].com
·      SaaS Event: Send
·      SaaS Service: Office365
·      SaaS Service Product: Exchange
·      SaaS Status Message: Succeeded
·      SaaS Office365 Attachment: WIRE 2021.xlsx (92406b); image.png (9084b); image.png (1454b); image.png (1648b); image.png (1691b); image.png (1909b); image.png (2094b)
·      SaaS Office365 Subject: Wires 11/8/21
·      SaaS Resource Location: \Drafts
·      SaaS User Agent: Client=OWA;Action=ViaProxy 

Based on the available evidence, it is highly likely that the data packages contain the data stolen during the account compromise the previous month.  

Once the credentials of an Office365 account are stolen, an attacker can not only access the user's mailbox, but also a full range of Office365 applications such as SharePoint folders, Teams Chat, or files in the user's OneDrive [11]. For example, files shared in Teams chat are stored in OneDrive for Business in a folder named Microsoft Teams Chat Files in the default Document library on SharePoint. One of the files visible on the data leak website, called ‘[REDACTED] CONTRACT.3.1.2020.pdf’, was also observed in the default document folder of a third user account (UserC) within the victim organization, suggesting the compromised accounts may have been able to access shared files stored on other accounts by moving laterally via other O365 applications such as Teams. 

One example can be seen in the below AS logs: 

·      Time: 2021-11-11 01:58:35 [UTC]
·      SaaS Resource Type: File
·      Protocol: OFFICE365
·      SaaS Account Name: 0365
·      SaaS Actor: UserC@[REDACTED]
·      SaaS Event: FilePreviewed
·      SaaS Service Product: OneDrive
·      SaaS Metric: ResourceViewed
·      SaaS Office365 Application Name: Media Analysis and Transformation Service
·      SaaS Office365 File Extension: pdf
·      SaaS Resource Location: https://[REDACTED]-my.sharepoint.com/personal/userC_[REDACTED]_com/Documents/Microsoft Teams Chat Files/[REDACTED] CONTRACT 3.1.2020.pdf
·      SaaS Resource Name: [REDACTED] CONTRACT 3.1.2020.pdf
·      SaaS Service: Office365
·      SaaS Service Product: OneDrive
·      SaaS User Agent: OneDriveMpc-Transform_Thumbnail/1.0 

In the period between the 1st and 30th November, the customer’s Darktrace DETECT/Apps trial had raised multiple high-level alerts associated with SaaS account compromise, but there was no evidence of file encryption.  

Establish Foothold 

Looking back at the start of the attack, it is unclear exactly how the attacker evaded the customer’s pre-existing security stack. At the time of the incident, the victim was using a Barracuda email gateway and Microsoft 365 Threat Management for their cloud environment. 

Darktrace detected no indication the accounts were compromised via credential bruteforcing, which would have enabled the attacker to bypass the Azure Active Directory smart lockout (if enabled). The credentials may have been harvested via a phishing campaign which successfully evaded the list of known ‘bad’ domains maintained by their email gateway.  

Upon gaining access to the account, the Microsoft Defender for Cloud Apps anomaly detection policies would have been expected to raise an alert [12]. In this instance, the unusual login from Nigeria occurred over 16 hours after the previous login from the US, potentially evading anomaly detection policies such as the ‘Impossible Travel’ rule. 

Figure 5: Event log showing the user accessing mail from USA a day before the suspicious usage from Nigeria 

Darktrace Coverage

Darktrace DETECT 

Throughout this event, high scoring model breaches associated with the attack were visible in the customer’s SaaS Console. In addition, there were two Cyber AI Analyst incidents for ‘Possible Account Hijack’ associated with the two compromised SaaS Office365 accounts, UserA and UserB. The visibility given by Darktrace DETECT also enabled the security team to confirm which files had been accessed and were likely part of the data leak.

Figure 6: Example Cyber AI Analyst incident of UserB SaaS Office365 account

Darktrace RESPOND

In this incident, the attackers successfully compromised O365 accounts in order to exfiltrate customer data. Whilst Darktrace RESPOND/Apps was being trialed and suggested several actions, it was configured in human confirmation mode. The following RESPOND/Apps actions were advised for these activities:  

·      ‘Antigena [RESPOND] Unusual Access Block’ triggered by the successful login from an unusual IP address, would have actioned the ‘Block IP’ inhibitor, preventing access to the account from the unusual IP for up to 24 hours
·      ‘Suspicious Source Activity Block’, triggered by the suspicious user agent used to bypass MFA, would have actioned the ‘Disable User’ inhibitor, disabling the user account for up to 24 hours 

During this incident, Darktrace RESPOND/Network was being used in fully autonomous mode in order to prevent the threat actor from pivoting into the network. The security team were unable to conclusively say if any attempts by the attacker to do this had been made. 

Concluding Thoughts  

Data theft extortion has become a widely used attack technique, and ransomware gangs may increasingly use this technique alone to target organizations without secure data encryption and storage policies.  

This case study describes a SaaS data theft extortion incident which bypassed MFA and existing security tools. The attacker appeared to compromise credentials without bruteforce activity, possibly with the use of social engineering through phishing. However, from the first new login, Darktrace DETECT identified the unusual credential use in spite of it being an existing account. Had Darktrace RESPOND/Apps been configured, it would have autonomously responded to halt this login and prevent the attacker from accomplishing their data theft mission.

Thanks to Oakley Cox, Brianna Leddy and Shuh Chin Goh for their contributions.

Appendices

References 

[1] https://securelist.com/new-ransomware-trends-in-2022/106457/

[2] https://www.itpro.co.uk/security/ransomware/367624/the-rise-of-double-extortion-ransomware

[3] https://www.malwarebytes.com/blog/news/2020/10/vastaamo-psychotherapy-data-breach-sees-the-most-vulnerable-victims-extorted

[4] https://www.blackfog.com/shift-from-ransomware-to-data-theft-extortion/

[5] https://www.abuseipdb.com/check/105.112.59.83

[6] https://www.abuseipdb.com/check/105.112.36.212

[7] https://www.abuseipdb.com/check/45.130.83.129

[8] https://docs.microsoft.com/en-us/microsoft-365/compliance/mailitemsaccessed-forensics-investigations?view=o365-worldwide

[9] https://www.abuseipdb.com/check/45.135.187.108

[10] https://www.virustotal.com/gui/ip-address/45.137.20.65/details

[11] https://tidorg.com/new-bec-phishing-attack-steals-office-365-credentials-and-bypasses-mfa/

[12] https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/responding-to-a-compromised-email-account?view=o365-worldwide

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adrianne Marques
Senior Research Analyst

More in this series

No items found.

Blog

/

Network

/

November 13, 2025

Unmasking Vo1d: Inside Darktrace’s Botnet Detection

Default blog imageDefault blog image

What is vo1d APK malware?

Vo1d malware first appeared in the wild in September 2024 and has since evolved into one of the most widespread Android botnets ever observed. This large-scale Android malware primarily targets smart TVs and low-cost Android TV boxes. Initially, Vo1d was identified as a malicious backdoor capable of installing additional third-party software [1]. Its functionality soon expanded beyond the initial infection to include deploying further malicious payloads, running proxy services, and conducting ad fraud operations. By early 2025, it was estimated that Vo1d had infected 1.3 to 1.6 million devices worldwide [2].

From a technical perspective, Vo1d embeds components into system storage to enable itself to download and execute new modules at any time. External researchers further discovered that Vo1d uses Domain Generation Algorithms (DGAs) to create new command-and-control (C2) domains, ensuring that regardless of existing servers being taken down, the malware can quickly reconnect to new ones. Previous published analysis identified dozens of C2 domains and hundreds of DGA seeds, along with new downloader families. Over time, Vo1d has grown increasingly sophisticated with clear signs of stronger obfuscation and encryption methods designed to evade detection [2].

Darktrace’s coverage

Earlier this year, Darktrace observed a surge in Vo1d-related activity across customer environments, with the majority of affected customers based in South Africa. Devices that had been quietly operating as expected began exhibiting unusual network behavior, including excessive DNS lookups. Open-source intelligence (OSINT) has long highlighted South Africa as one of the countries most impacted by Vo1d infections [2].

What makes the recent activity particularly interesting is that the surge observed by Darktrace appears to be concentrated specifically in South African environments. This localized spike suggests that a significant number of devices may have been compromised, potentially due to vulnerable software, outdated firmware, or even preloaded malware. Regions with high prevalence of low-cost, often unpatched devices are especially susceptible, as these everyday consumer electronics can be quietly recruited into the botnet’s network. This specifically appears to be the case with South Africa, where public reporting has documented widespread use of low-cost boxes, such as non-Google-certified Android TV sticks, that frequently ship with outdated firmware [3].

The initial triage highlighted the core mechanism Vo1d uses to remain resilient: its use of DGA. A DGA deterministically creates a large list of pseudo-random domain names on a predictable schedule. This enables the malware to compute hundreds of candidate domains using the same algorithm, instead of using a hard-coded single C2 hostname that defenders could easily block or take down. To ensure reproducible from the infected device’s perspective, Vo1d utilizes DGA seeds. These seeds might be a static string, a numeric value, or a combination of underlying techniques that enable infected devices to generate the same list of candidate domains for a time window, provided the same DGA code, seed, and date are used.

Interestingly, Vo1d’s DGA seeds do not appear to be entirely unpredictable, and the generated domains lack fully random-looking endings. As observed in Figure 1, there is a clear pattern in the names generated. In this case, researchers identified that while the first five characters would change to create the desired list of domain names, the trailing portion remained consistent as part of the seed: 60b33d7929a, which OSINT sources have linked to the Vo1d botnet. [2]. Darktrace’s Threat Research team also identified a potential second DGA seed, with devices in some cases also engaging in activity involving hostnames matching the regular expression /[a-z]{5}fc975904fc9\.(com|top|net). This second seed has not been reported by any OSINT vendors at the time of writing.

Another recurring characteristic observed across multiple cases was the choice of top-level domains (TLDs), which included .com, .net, and .top.

Figure 1: Advanced Search results showing DNS lookups, providing a glimpse on the DGA seed utilized.

The activity was detected by multiple models in Darktrace / NETWORK, which triggered on devices making an unusually large volume of DNS requests for domains uncommon across the network.

During the network investigation, Darktrace analysts traced Vo1d’s infrastructure and uncovered an interesting pattern related to responder ASNs. A significant number of connections pointed to AS16509 (AMAZON-02). By hosting redirectors or C2 nodes inside major cloud environments, Vo1d is able to gain access to highly available and geographically diverse infrastructure. When one node is taken down or reported, operators can quickly enable a new node under a different IP within the same ASN. Another feature of cloud infrastructure that hardens Vo1d’s resilience is the fact that many organizations allow outbound connections to cloud IP ranges by default, assuming they are legitimate. Despite this, Darktrace was able to identify the rarity of these endpoints, identifying the unusualness of the activity.

Analysts further observed that once a generated domain successfully resolved, infected devices consistently began establishing outbound connections to ephemeral port ranges like TCP ports 55520 and 55521. These destination ports are atypical for standard web or DNS traffic. Even though the choice of high-numbered ports appears random, it is likely far from not accidental. Commonly used ports such as port 80 (HTTP) or 443 (HTTPS) are often subject to more scrutiny and deeper inspection or content filtering, making them riskier for attackers. On the other hand, unregistered ports like 55520 and 55521 are less likely to be blocked, providing a more covert channel that blends with outbound TCP traffic. This tactic helps evade firewall rules that focus on common service ports. Regardless, Darktrace was able to identify external connections on uncommon ports to locations that the network does not normally visit.

The continuation of the described activity was identified by Darktrace’s Cyber AI Analyst, which correlated individual events into a broader interconnected incident. It began with the multiple DNS requests for the algorithmically generated domains, followed by repeated connections to rare endpoints later confirmed as attacker-controlled infrastructure. Cyber AI Analyst’s investigation further enabled it to categorize the events as part of the “established foothold” phase of the attack.

Figure 2: Cyber AI Analyst incident illustrating the transition from DNS requests for DGA domains to connections with resolved attacker-controlled infrastructure.

Conclusion

The observations highlighted in this blog highlight the precision and scale of Vo1d’s operations, ranging from its DGA-generated domains to its covert use of high-numbered ports. The surge in affected South African environments illustrate how regions with many low-cost, often unpatched devices can become major hubs for botnet activity. This serves as a reminder that even everyday consumer electronics can play a role in cybercrime, emphasizing the need for vigilance and proactive security measures.

Credit to Christina Kreza (Cyber Analyst & Team Lead) and Eugene Chua (Principal Cyber Analyst & Team Lead)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

  • Anomalous Connection / Devices Beaconing to New Rare IP
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / DGA Beacon
  • Compromise / Domain Fluxing
  • Compromise / Fast Beaconing to DGA
  • Unusual Activity / Unusual External Activity

List of Indicators of Compromise (IoCs)

  • 3.132.75[.]97 – IP address – Likely Vo1d C2 infrastructure
  • g[.]sxim[.]me – Hostname – Likely Vo1d C2 infrastructure
  • snakeers[.]com – Hostname – Likely Vo1d C2 infrastructure

Selected DGA IoCs

  • semhz60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • ggqrb60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • eusji60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • uacfc60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • qilqxfc975904fc9[.]top – Hostname – Possible Vo1d C2 DGA endpoint

MITRE ATT&CK Mapping

  • T1071.004 – Command and Control – DNS
  • T1568.002 – Command and Control – Domain Generation Algorithms
  • T1568.001 – Command and Control – Fast Flux DNS
  • T1571 – Command and Control – Non-Standard Port

[1] https://news.drweb.com/show/?lng=en&i=14900

[2] https://blog.xlab.qianxin.com/long-live-the-vo1d_botnet/

[3] https://mybroadband.co.za/news/broadcasting/596007-warning-for-south-africans-using-specific-types-of-tv-sticks.html

Continue reading
About the author
Christina Kreza
Cyber Analyst

Blog

/

Network

/

November 6, 2025

Darktrace Named the Only 2025 Gartner® Peer Insights™ Customers’ Choice for Network Detection and Response

Default blog imageDefault blog image

Darktrace: The only Customers’ Choice for NDR in 2025

In a year defined by rapid change across the threat landscape, recognition from those who use and rely on security technology every day means the most.

That’s why we’re proud to share that Darktrace has been named the only Customers’ Choice in the 2025 Gartner® Peer Insights™ Voice of the Customer for Network Detection and Response (NDR).

Out of 11 leading NDR vendors evaluated, Darktrace stood alone as the sole Customers’ Choice, a recognition that we feel reflects not just our innovation, but the trust and satisfaction of the customers who secure their networks with Darktrace every day.

What the Gartner® Peer Insights™ Voice of the Customer means

“Voice of the Customer” is a document that synthesizes Gartner Peer Insights reviews into insights for buyers of technology and services. This aggregated peer perspective, along with the individual detailed reviews, is complementary to Gartner expert research and can play a key role in your buying process. Peers are verified reviewers of a technology product or service, who not only rate the offering, but also provide valuable feedback to consider before making a purchase decision. Vendors placed in the upper-right “Customers’ Choice” quadrant of the “Voice of the Customer” have scores that meet or exceed the market average for both axes (User Interest and Adoption, and Overall Experience).It’s not just a rating. We feel it’s a reflection of genuine customer sentiment and success in the field.

In our view, Customers consistently highlight Darktrace’s ability to:

  • Detect and respond to unknown threats in real time
  • Deliver unmatched visibility across IT, OT, and cloud environments
  • Automate investigations and responses through AI-driven insights

We believe this recognition reinforces what our customers already know: that Darktrace helps them see, understand, and stop attacks others miss.

A rare double: recognized by customers and analysts alike

This distinction follows another major recogniton. Darktrace’s placement as a Leader in the Gartner® Magic Quadrant™ for Network Detection and Response earlier this year.

That makes Darktrace the only vendor to achieve both:

  • A Leader status in the Gartner Magic Quadrant for NDR, and
  • A Customers’ Choice in Gartner Peer Insights 2025

It’s a rare double that we feel reflects both industry leadership and customer trust, two perspectives that, together, define what great cybersecurity looks like.

A Customers’ Choice across the network and the inbox

To us, this recognition also builds on Darktrace’s momentum across multiple domains. Earlier this year, Darktrace was also named a Customers’ Choice for Email Security Platforms in the Gartner® Peer Insights™ report.

With more than 1,000 verified reviews across Network Detection and Response, Email Security Platforms, and Cyber Physical Systems (CPS), we at Darktrace are proud to be trusted across the full attack surface, from the inbox to the industrial network.

Thank you to our customers

We’re deeply grateful to every customer who shared their experience with Darktrace on Gartner Peer Insights. Your insights drive our innovation and continue to shape how we protect complex, dynamic environments across the world.

Discover why customers choose Darktrace for network and email security.

Gartner® Peer Insights™ content consists of the opinions of individual end users based on their own experiences, and should not be construed as statements of fact, nor do they represent the views of Gartner or its affiliates. Gartner does not endorse any vendor, product or service depicted in this content nor makes any warranties, expressed or implied, with respect to this content, about its accuracy or completeness, including any warranties of merchantability or fitness for a particular purpose.

GARTNER is a registered trademark and service mark of Gartner, Inc. and/or its affiliates in the U.S. and internationally and is used herein with permission. All rights reserved.

Magic Quadrant and Peer Insights are registered trademarks of Gartner, Inc. and/or its affiliates and is used herein with permission. All rights reserved.

Gartner, Voice of the Customer for Network Detection and Response, By Peer Community Contributor, 30 October 2025

Continue reading
About the author
Mikey Anderson
Product Marketing Manager, Network Detection & Response
Your data. Our AI.
Elevate your network security with Darktrace AI