ブログ
/
OT
/
November 21, 2022

How Darktrace Finds Misconfigurations

Explore Darktrace’s strategies for preventing IT misconfigurations. Our blog provides actionable insights and use cases.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Carlos Gray
Senior Product Marketing Manager, Email
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
21
Nov 2022

During an initial demo with a water management company, Darktrace found an industrial control system exposed to the internet. Immediately, the organization went into incident response mode because this system was mission critical and could potentially impact the water facilities, as it had the power to adjust water flow.

This asset was exposed because of a simple misconfiguration, highlighting to the customer the need for proactive monitoring of its attack surface. In this case, the engineer who set up the system had simply not noticed the mistake, but these scenarios could be more dangerous and more likely if insider threat is involved.  

The growing threat of misconfigurations in cybersecurity

Misconfigurations arise when vital security settings are either not applied or applied incorrectly. Such misconfigurations produce vulnerable security openings that can be exploited by attackers to either gain a foothold in the asset or generate a more dangerous attack, like altering water flow or deploying ransomware. There is a wide variety of assets that are subject to potential misconfigurations, including web or application servers, cloud containers, custom code, network devices like desktops or servers, and entire databases.  

Unfortunately, the pervasiveness of misconfigurations is only increasing. In the past 12 months, there has been a 310% increase in hackers reporting misconfiguration vulnerabilities to the HackerOne platform.  

Unique risks for industrial control systems and critical infrastructure

Every digital environment has its own characteristics that alter the prevalence or the impact of misconfigurations. For example, industrial devices that support critical infrastructure are all the more sensitive to these types of changes, as these devices often have limited integrated security, despite their highly delicate functions. Because with every vendor and device has its own recommended configuration, security teams must take additional precautions.  

In cloud environments, the ease of deployment and increased capabilities also tend to produce more misconfigurations. Digital footprints are growing at such a pace that security departments may opt to skip onboarding processes of technologies to avoid becoming an obstacle for the business. It has become so easy for any department, regardless of their technical knowledge, to add cloud applications, software, or even hardware to the company's architecture. This is why shadow IT is so troublesome: it's impossible for the security team to ensure something is well configured if they don’t even know it exists.  

In addition, due to rapid growth, security and IT teams aren’t experts in every technology included within the enterprise architecture. So, the teams may do their best to apply security controls while being unaware the current configuration is a misconfiguration. With digital assets’ constant evolution, they may even be configured correctly at one point but become misconfigured in the future if not updated.  

Mitigating Misconfiguration

It’s human nature that we make mistakes, and the more assets and third parties that are introduced, the more mistakes are possible. However, there are certain steps organizations can take towards reducing the frequency and the impact of misconfigurations.  

Any organization needs to have discovery processes to maintain an updated inventory of their assets, and should categorize these assets based on their exposure as well as their criticality to the business. This information should feed into the organization’s risk analysis, which in turn informs the priority of mitigation actions or controls. This process, when done manually, can be long and arduous, and is not continuous: as organizations’ digital footprints are evolving so rapidly, these analyses can become obsolete quickly.  

On the other hand, organizations must also monitor the activity of these assets and not just assess them at face value. As with anything in security, security teams need to be weary of the symptoms. Inappropriate configurations will often generate alerts such as slow performance, multiple suspicious login attempts, bloatware, unexpected application behavior such as redirects or shutdowns.  

Misconfigurations are easier to identify, prioritize and remediate with an AI solution that provides continuous analysis of the organization’s external and internal attack surface. Darktrace / Proactive Exposure Management and Darktrace / Attack Surface Management achieve exactly this.  

Managing external assets

With ASM, security teams gain visibility of the entire external attack surface, including elusive assets like shadow IT and legacy devices. It frequently uncovers misconfigurations and recommends how to mitigate the risks caused by them. Some examples include email spoofing, no SPF records, no DKIM records, no DMARC records, subdomain takeover possible, and missing routes for netblocks.  

The truly unique aspect of a Self-Learning technology is that security teams receive notifications tailored to the precise assets within their architectures. In other words, the tool will only provide the misconfiguration recommendations for the specific assets that require it, instead of having to reverse engineer state-of-the-art security and then trying to see where it can apply within the organization. With Darktrace, security teams are already getting that information directly. In fact, it doesn’t stop there, misconfigurations are prirotized by the risk inherited. The security team only has to check the list of misconfigurations in order of priority and take action on them.  

Exposure management & attack paths

From an internal perspective, Darktrace / Proactive Exposure Management will map those misconfigurations to potential attack paths, answering the question of what damage each misconfiguration can lead to and more importantly how: an attacker could go from that initial misconfiguration through each lateral movement, whether it is via a device or a user, and then reach the most critical devices within the infrastructure.

Often in security, the focus can drift to the latest tactics and techniques being used by large Advanced Persistent Threats, but a simple misconfiguration caused by a rushed or distracted employee can pose an equally large threat. An innocent mistake can often open an even larger weakness in the digital architecture, as the attacker doesn’t have to force to open the window to break in.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

/

February 13, 2026

CVE-2026-1731: How Darktrace Sees the BeyondTrust Exploitation Wave Unfolding

Default blog imageDefault blog image

Note: Darktrace's Threat Research team is publishing now to help defenders. We will update continue updating this blog as our investigations unfold.

Background

On February 6, 2026, the Identity & Access Management solution BeyondTrust announced patches for a vulnerability, CVE-2026-1731, which enables unauthenticated remote code execution using specially crafted requests.  This vulnerability affects BeyondTrust Remote Support (RS) and particular older versions of Privileged Remote Access (PRA) [1].

A Proof of Concept (PoC) exploit for this vulnerability was released publicly on February 10, and open-source intelligence (OSINT) reported exploitation attempts within 24 hours [2].

Previous intrusions against Beyond Trust technology have been cited as being affiliated with nation-state attacks, including a 2024 breach targeting the U.S. Treasury Department. This incident led to subsequent emergency directives from  the Cybersecurity and Infrastructure Security Agency (CISA) and later showed attackers had chained previously unknown vulnerabilities to achieve their goals [3].

Additionally, there appears to be infrastructure overlap with React2Shell mass exploitation previously observed by Darktrace, with command-and-control (C2) domain  avg.domaininfo[.]top seen in potential post-exploitation activity for BeyondTrust, as well as in a React2Shell exploitation case involving possible EtherRAT deployment.

Darktrace Detections

Darktrace’s Threat Research team has identified highly anomalous activity across several customers that may relate to exploitation of BeyondTrust since February 10, 2026. Observed activities include:

-              Outbound connections and DNS requests for endpoints associated with Out-of-Band Application Security Testing; these services are commonly abused by threat actors for exploit validation.  Associated Darktrace models include:

o    Compromise / Possible Tunnelling to Bin Services

-              Suspicious executable file downloads. Associated Darktrace models include:

o    Anomalous File / EXE from Rare External Location

-              Outbound beaconing to rare domains. Associated Darktrace models include:

o   Compromise / Agent Beacon (Medium Period)

o   Compromise / Agent Beacon (Long Period)

o   Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

o   Compromise / Beacon to Young Endpoint

o   Anomalous Server Activity / Rare External from Server

o   Compromise / SSL Beaconing to Rare Destination

-              Unusual cryptocurrency mining activity. Associated Darktrace models include:

o   Compromise / Monero Mining

o   Compromise / High Priority Crypto Currency Mining

And model alerts for:

o    Compromise / Rare Domain Pointing to Internal IP

IT Defenders: As part of best practices, we highly recommend employing an automated containment solution in your environment. For Darktrace customers, please ensure that Autonomous Response is configured correctly. More guidance regarding this activity and suggested actions can be found in the Darktrace Customer Portal.  

Appendices

Potential indicators of post-exploitation behavior:

·      217.76.57[.]78 – IP address - Likely C2 server

·      hXXp://217.76.57[.]78:8009/index.js - URL -  Likely payload

·      b6a15e1f2f3e1f651a5ad4a18ce39d411d385ac7  - SHA1 - Likely payload

·      195.154.119[.]194 – IP address – Likely C2 server

·      hXXp://195.154.119[.]194/index.js - URL – Likely payload

·      avg.domaininfo[.]top – Hostname – Likely C2 server

·      104.234.174[.]5 – IP address - Possible C2 server

·      35da45aeca4701764eb49185b11ef23432f7162a – SHA1 – Possible payload

·      hXXp://134.122.13[.]34:8979/c - URL – Possible payload

·      134.122.13[.]34 – IP address – Possible C2 server

·      28df16894a6732919c650cc5a3de94e434a81d80 - SHA1 - Possible payload

References:

1.        https://nvd.nist.gov/vuln/detail/CVE-2026-1731

2.        https://www.securityweek.com/beyondtrust-vulnerability-targeted-by-hackers-within-24-hours-of-poc-release/

3.        https://www.rapid7.com/blog/post/etr-cve-2026-1731-critical-unauthenticated-remote-code-execution-rce-beyondtrust-remote-support-rs-privileged-remote-access-pra/

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead

Blog

/

AI

/

February 13, 2026

How AI is redefining cybersecurity and the role of today’s CIO

Default blog imageDefault blog image

Why AI is essential to modern security

As attackers use automation and AI to outpace traditional tools and people, our approach to cybersecurity must fundamentally change. That’s why one of my first priorities as Withum's CIO was to elevate cybersecurity from a technical function to a business enabler.

What used to be “IT’s problem” is now a boardroom conversation – and for good reason. Protecting our data, our people, and our clients directly impacts revenue, reputation and competitive positioning.  

As CIOs / CISOs, our responsibilities aren’t just keeping systems running, but enabling trust, protecting our organization's reputation, and giving the business confidence to move forward even as the digital world becomes less predictable. To pull that off, we need to know the business inside-out, understand risk, and anticipate what's coming next. That's where AI becomes essential.

Staying ahead when you’re a natural target

With more than 3,100 team members and over 1,000 CPAs (Certified Public Accountant), Withum’s operates in an industry that naturally attracts attention from attackers. Firms like ours handle highly sensitive financial and personal information, which puts us squarely in the crosshairs for sophisticated phishing, ransomware, and cloud-based attacks.

We’ve built our security program around resilience, visibility, and scale. By using Darktrace’s AI-powered platform, we can defend against both known and unknown threats, across email and network, without slowing our teams down.

Our focus is always on what we’re protecting: our clients’ information, our intellectual property, and the reputation of the firm. With Darktrace, we’re not just keeping up with the massive volume of AI-powered attacks coming our way, we’re staying ahead. The platform defends our digital ecosystem around the clock, detecting potential threats across petabytes of data and autonomously investigating and responding to tens of thousands of incidents every year.

Catching what traditional tools miss

Beyond the sheer scale of attacks, Darktrace ActiveAI Security PlatformTM is critical for identifying threats that matter to our business. Today’s attackers don’t use generic techniques. They leverage automation and AI to craft highly targeted attacks – impersonating trusted colleagues, mimicking legitimate websites, and weaving in real-world details that make their messages look completely authentic.

The platform, covering our network, endpoints, inboxes, cloud and more is so effective because it continuously learns what’s normal for our business: how our users typically behave, the business- and industry-specific language we use, how systems communicate, and how cloud resources are accessed. It picks up on minute details that would sail right past traditional tools and even highly trained security professionals.

Freeing up our team to do what matters

On average, Darktrace autonomously investigates 88% of all our security events, using AI to connect the dots across email, network, and cloud activity to figure out what matters. That shift has changed how our team works. Instead of spending hours sorting through alerts, we can focus on proactive efforts that actually strengthen our security posture.

For example, we saved 1,850 hours on investigating security issues over a ten-day period. We’ve reinvested the time saved into strengthening policies, refining controls, and supporting broader business initiatives, rather than spending endless hours manually piecing together alerts.

Real confidence, real results

The impact of our AI-driven approach goes well beyond threat detection. Today, we operate from a position of confidence, knowing that threats are identified early, investigated automatically, and communicated clearly across our organization.

That confidence was tested when we withstood a major ransomware attack by a well-known threat group. Not only were we able to contain the incident, but we were able to trace attacker activity and provided evidence to law enforcement. That was an exhilarating experience! My team did an outstanding job, and moments like that reinforce exactly why we invest in the right technology and the right people.

Internally, this capability has strengthened trust at the executive level. We share security reporting regularly with leadership, translating technical activity into business-relevant insights. That transparency reinforces cybersecurity as a shared responsibility, one that directly supports growth, continuity, and reputation.

Culturally, we’ve embedded security awareness into daily operations through mandatory monthly training, executive communication, and real-world industry examples that keep cybersecurity top of mind for every employee.

The only headlines we want are positive ones: Withum expanding services, Withum growing year over year. Security plays a huge role in making sure that’s the story we get to tell.

What’s next

Looking ahead, we’re expanding our use of Darktrace, including new cloud capabilities that extend AI-driven visibility and investigation into our AWS and Azure environments.

As I continue shaping our security team, I look for people with passion, curiosity, and a genuine drive to solve problems. Those qualities matter just as much as formal credentials in my view. Combined with AI, these attributes help us build a resilient, engaged security function with low turnover and high impact.

For fellow technology leaders, my advice is simple: be forward-thinking and embrace change. We must understand the business, the threat landscape, and how technology enables both. By augmenting human expertise rather than replacing it, AI allows us to move upstream by anticipating risk, advising the business, and fostering stronger collaboration across teams.

Continue reading
About the author
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ