Blog
/
Network
/
March 22, 2024

What are Botnets and How Darktrace Uncovers Them

Learn how Darktrace detected and implemented defense protocols against Socks5Systemz botnet before any threat to intelligence had been published.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
22
Mar 2024

What are botnets?

Although not a recent addition to the threat landscape, botnets persist as a significant concern for organizations, with many threat actors utilizing them for political, strategic, or financial gain. Botnets pose a particularly persistent threat to security teams; even if one compromised device is detected, attackers will likely have infected multiple devices and can continue to operate. Moreover, threat actors are able to easily replace the malware communication channels between infected devices and their command-and-control (C2) servers, making it incredibly difficult to remove the infection.

Botnet example: Socks5Systemz

One example of a botnet recently investigated by the Darktrace Threat Research team is Socks5Systemz. Socks5Systemz is a proxy-for-rent botnet, whereby actors can rent blocks of infected devices to perform proxying services.  Between August and November 2023, Darktrace detected indicators of Socks5Systemz botnet compromise within a cross-industry section of the customer base. Although open-source intelligence (OSINT) research of the botnet only appeared in November 2023, the anomaly-based approach of Darktrace DETECT™ allowed it to identify multiple stages of the network-based activity on affected customer systems well before traditional rules and signatures would have been implemented.

Darktrace’s Cyber AI Analyst™ complemented DETECT’s successful identification of Socks5Systemz activity on customer networks, playing a pivotal role in piecing together the seemingly separate events that comprised the wider compromise. This allowed Darktrace to build a clearer picture of the attack, empowering its customers with full visibility over emerging incidents.

In the customer environments highlighted in this blog, Darktrace RESPOND™ was not configured to operate autonomously. As a result, Socks5Systemz attacks were able to advance through their kill chains until customer security teams acted upon Darktrace’s detections and began their remediation procedures.

What is Socks5Systemz?

The Socks5Systemz botnet is a proxy service where individuals can use infected devices as proxy servers.

These devices act as ‘middlemen’, forwarding connections from malicious actors on to their intended destination. As this additional connectivity conceals the true origin of the connections, threat actors often use botnets to increase their anonymity. Although unauthorized proxy servers on a corporate network may not appear at first glance to be a priority for organizations and their security teams, complicity in proxy botnets could result in reputational damage and significant financial losses.

Since it was first observed in the wild in 2016, the Socks5Systemz botnet has grown steadily, seemingly unnoticed by cyber security professionals, and has infected a reported 10,000 devices worldwide [1]. Cyber security researchers noted a high concentration of compromised devices in India, with lower concentrations of devices infected in the United States, Latin America, Australia and multiple European and African countries [2]. Renting sections of the Socks5Systemz botnet costs between 1 USD and 4,000 USD, with options to increase the threading and time-range of the rentals [2]. Due to the lack of affected devices in Russia, some threat researchers have concluded that the botnet’s operators are likely Russian [2].

Darktrace’s Coverage of Socks5Systemz

The Darktrace Threat Research team conducted investigations into campaign-like activity across the customer base between August and November 2023, where multiple indicators of compromise (IoCs) relating to the Socks5Systemz proxy botnet were observed. Darktrace identified several stages of the attack chain described in static malware analysis by external researchers. Darktrace was also able to uncover additional IoCs and stages of the Socks5Systemz attack chain that had not featured in external threat research.

Delivery and Execution

Prior research on Socks5Systemz notes how the malware is typically delivered via user input, with delivery methods including phishing emails, exploit kits, malicious ads, and trojanized executables downloaded from peer-to-peer (P2P) networks [1].

Threat actors have also used separate malware loaders such as PrivateLoader and Amadey deliver the Socks5Systemz payload. These loaders will drop executable files that are responsible for setting up persistence and injecting the proxy bot into the infected device’s memory [2]. Although evidence of initial payload delivery did not appear during its investigations, Darktrace did discover IoCs relating to PrivateLoader and Amadey on multiple customer networks. Such activity included HTTP POST requests using PHP to rare external IPs and HTTP connections with a referrer header field, indicative of a redirected connection.

However, additional adjacent activity that may suggest initial user execution and was observed during Darktrace’s investigations. For example, an infected device on one deployment made a HTTP GET request to a rare external domain with a “.fun” top-level domain (TLD) for a PDF file. The URI also appears to have contained a client ID. While this download and HTTP request likely corresponded to the gathering and transmission of further telemetry data and infection verification [2], the downloaded PDF file may have represented a malicious payload.

Advanced Search log details highlighting a device infected by Socks5Systemz downloading a suspicious PDF file.
Figure 1: Advanced Search log details highlighting a device infected by Socks5Systemz downloading a suspicious PDF file.

Establishing C2 Communication  

Once the proxy bot has been injected into the device’s memory, the malware attempts to contact servers owned by the botnet’s operators. Across several customer environments, Darktrace identified infected devices attempting to establish connections with such C2 servers. First, affected devices would make repeated HTTP GET requests over port 80 to rare external domains; these endpoints typically had “.ua” and “.ru” TLDs. The majority of these connection attempts were not preceded by a DNS host lookup, suggesting that the domains were already loaded in the device’s cache memory or hardcoded into the code of running processes.

Figure 2: Breach log data connections identifying repeated unusual HTTP connections over port 80 for domains without prior DNS host lookup.

While most initial HTTP GET requests across investigated incidents did not feature DNS host lookups, Darktrace did identify affected devices on a small number of customer environments performing a series of DNS host lookups for seemingly algorithmically generated domains (DGA). These domains feature the same TLDs as those seen in connections without prior DNS host lookups.  

Figure 3: Cyber AI Analyst data indicating a subset of DGAs queried via DNS by infected devices.

These DNS requests follow the activity reported by researchers, where infected devices query a hardcoded DNS server controlled by the threat actor for an DGA domain [2]. However, as the bulk of Darktrace’s investigations presented HTTP requests without a prior DNS host lookup, this activity indicates a significant deviation from the behavior reported by OSINT sources. This could indicate that multiple variations of the Socks5Systemz botnet were circulating at the time of investigation.

Most hostnames observed during this time of investigation follow a specific regular expression format: /[a-z]{7}\.(ua|net|info|com|ru)/ or /[a-z0-9]{15}\.(ua)/. Darktrace also noticed the HTTP GET requests for DGA domains followed a consistent URI pattern: /single.php?c=<STRING>. The requests were also commonly made using the “Mozilla/5.0 (Windows; U; MSIE 9.0; Windows NT 9.0; en-US)” user agent over port 80.

This URI pattern observed during Darktrace’s investigations appears to reflect infected devices contacting Socks5Systemz C2 servers to register the system and details of the host, and signal it is ready to receive further instructions [2]. These URIs are encrypted with a RC4 stream cipher and contain information relating to the device’s operating system and architecture, as well as details of the infection.

The HTTP GET requests during this time, which involved devices made to a variety a variety of similar DGA domains, appeared alongside IP addresses that were later identified as Socks5Systemz C2 servers.

Figure 4: Cyber AI Analyst investigation details highlighting HTTP GET activity whereby RC4 encrypted data is sent to proxy C2 domains.

However, not all affected devices observed by Darktrace used DGA domains to transmit RC4 encoded data. Some investigated systems were observed making similar HTTP GET requests over port 80, albeit to the external domain: “bddns[.]cc”, using the aforementioned Mozilla user agent. During these requests, Darktrace identified a consistent URI pattern, similar to that seen in the DGA domain GET requests: /sign/<RC4 cipher text>.  

Darktrace DETECT recognized the rarity of the domains and IPs that were connected to by affected devices, as well as the usage of the new Mozilla user agent.  The HTTP connections, and the corresponding Darktrace DETECT model breaches, parallel the analysis made by external researchers: if the initial DGA DNS requests do not return a valid C2 server, infected devices connect to, and request the IP address of a server from, the above-mentioned domain [2].

Connection to Proxy

After sending host and infection details via HTTP and receiving commands from the C2 server, affected devices were frequently observed initiating activity to join the Sock5Systemz botnet. Infected hosts would first make HTTP GET requests to an IP identified as Socks5Systemz’s proxy checker application, usually sending the URI “proxy-activity.txt” to the domain over the HTTP protocol. This likely represents an additional validation check to confirm that the infected device is ready to join the botnet.

Figure 5: Cyber AI Analyst investigation detailing HTTP GET requests over port 80 to the Socks5Systemz Proxy Checker Application.

Following the final validation checks, devices would then attempt TCP connections to a range of IPs, which have been associated with BackConnect proxy servers, over port 1074. At this point, the device is able to receive commands from actors who login to and operate the corresponding BackConnect server. This BackConnect server will transmit traffic from the user renting the segment of the botnet [2].

Darktrace observed a range of activity associated with this stage of the attack, including the use of new or unusual user agents, connections to suspicious IPs, and other anomalous external connectivity which represented a deviation from affected devices’ expected behavior.

Additional Activities Following Proxy Addition

The Darktrace Threat Research team found evidence of the possible deployment of additional malware strains during their investigation into devices affected by Socks5Systemz. IoCs associated with both the Amadey and PrivateLoader loader malware strains, both of which are known to distribute Socks5Systemz, were also observed on affected devices. Additionally, Darktrace observed multiple infected systems performing cryptocurrency mining operations around the time of the Sock5Systemz compromise, utilizing the MinerGate protocol to conduct login and job functions, as well as making DNS requests for mining pools.

While such behavior would fall outside of the expected activity for Socks5Systemz and cannot be definitively attributed to it, Darktrace did observe devices affected by the botnet performing additional malicious downloads and operations during its investigations.

Conclusion

Ultimately, Darktrace’s anomaly-based approach to threat detection enabled it to effectively identify and alert for malicious Socks5Systemz botnet activity long before external researchers had documented its IoCs and tactics, techniques, and procedures (TTPs).  

In fact, Darktrace not only identified multiple distinct attack phases later outlined in external research but also uncovered deviations from these expected patterns of behavior. By proactively detecting emerging threats through anomaly detection rather than relying on existing threat intelligence, Darktrace is well positioned to detect evolving threats like Socks5Systemz, regardless of what their future iterations might look like.

Faced with the threat of persistent botnets, it is crucial for organizations to detect malicious activity in its early stages before additional devices are compromised, making it increasingly difficult to remediate. Darktrace’s suite of products enables the swift and effective detection of such threats. Moreover, when enabled in autonomous response mode, Darktrace RESPOND is uniquely positioned to take immediate, targeted actions to contain these attacks from the onset.

Credit to Adam Potter, Cyber Security Analyst, Anna Gilbertson, Cyber Security Analyst

Appendices

DETECT Model Breaches

  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Compromise / Beaconing Activity To External Rare
  • Compromise / DGA Beacon
  • Compromise / Beacon to Young Endpoint
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / HTTP Beaconing to Rare Destination
  • Compromise / Quick and Regular Windows HTTP Beaconing
  • Compromise / Agent Beacon (Medium Period)
  • Compromise / Agent Beacon (Long Period)
  • Device / New User Agent
  • Device / New User Agent and New IP

Cyber AI Analyst Incidents

  • Possible HTTP Command and Control
  • Possible HTTP Command and Control to Multiple Endpoints
  • Unusual Repeated Connections
  • Unusual Repeated Connections to Multiple Endpoints
  • Multiple DNS Requests for Algorithmically Generated Domains

Indicators of Compromise

IoC - Type - Description

185.141.63[.]172 - IP Address - Socks5Systemz C2 Endpoint

193.242.211[.]141 - IP Address - Socks5Systemz C2 Endpoint

109.230.199[.]181 - IP Address - Socks5Systemz C2 Endpoint

109.236.88[.]134 - IP Address - Socks5Systemz C2 Endpoint

217.23.5[.]14 - IP Address - Socks5Systemz Proxy Checker App

88.80.148[.]8 - IP Address - Socks5Systemz Backconnect Endpoint

88.80.148[.]219 - IP Address - Socks5Systemz Backconnect Endpoint

185.141.63[.]4 - IP Address - Socks5Systemz Backconnect Endpoint

185.141.63[.]2 - IP Address - Socks5Systemz Backconnect Endpoint

195.154.188[.]211 - IP Address - Socks5Systemz Backconnect Endpoint

91.92.111[.]132 - IP Address - Socks5Systemz Backconnect Endpoint

91.121.30[.]185 - IP Address - Socks5Systemz Backconnect Endpoint

94.23.58[.]173 - IP Address - Socks5Systemz Backconnect Endpoint

37.187.148[.]204 - IP Address - Socks5Systemz Backconnect Endpoint

188.165.192[.]18 - IP Address - Socks5Systemz Backconnect Endpoint

/single.php?c=<RC4 data hex encoded> - URI - Socks5Systemz HTTP GET Request

/sign/<RC4 data hex encoded> - URI - Socks5Systemz HTTP GET Request

/proxy-activity.txt - URI - Socks5Systemz HTTP GET Request

datasheet[.]fun - Hostname - Socks5Systemz C2 Endpoint

bddns[.]cc - Hostname - Socks5Systemz C2 Endpoint

send-monitoring[.]bit - Hostname - Socks5Systemz C2 Endpoint

MITRE ATT&CK Mapping

Command and Control

T1071 - Application Layer Protocol

T1071.001 – Web protocols

T1568 – Dynamic Resolution

T1568.002 – Domain Generation Algorithms

T1132 – Data Encoding

T1132 – Non-Standard Encoding

T1090 – Proxy

T1090.002 – External Proxy

Exfiltration

T1041 – Exfiltration over C2 channel

Impact

T1496 – Resource Hijacking

References

1. https://www.bleepingcomputer.com/news/security/socks5systemz-proxy-service-infects-10-000-systems-worldwide/

2. https://www.bitsight.com/blog/unveiling-socks5systemz-rise-new-proxy-service-privateloader-and-amadey

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst

More in this series

No items found.

Blog

/

Identity

/

July 3, 2025

Top Eight Threats to SaaS Security and How to Combat Them

Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

/

July 2, 2025

Pre-CVE Threat Detection: 10 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability

Default blog imageDefault blog image

Vulnerabilities are weaknesses in a system that can be exploited by malicious actors to gain unauthorized access or to disrupt normal operations. Common Vulnerabilities and Exposures (or CVEs) are a list of publicly disclosed cybersecurity vulnerabilities that can be tracked and mitigated by the security community.

When a vulnerability is discovered, the standard practice is to report it to the vendor or the responsible organization, allowing them to develop and distribute a patch or fix before the details are made public. This is known as responsible disclosure.

With a record-breaking 40,000 CVEs reported for 2024 and a predicted higher number for 2025 by the Forum for Incident Response and Security Teams (FIRST) [1], anomaly-detection is essential for identifying these potential risks. The gap between exploitation of a zero-day and disclosure of the vulnerability can sometimes be considerable, and retroactively attempting to identify successful exploitation on your network can be challenging, particularly if taking a signature-based approach.

Detecting threats without relying on CVE disclosure

Abnormal behaviors in networks or systems, such as unusual login patterns or data transfers, can indicate attempted cyber-attacks, insider threats, or compromised systems. Since Darktrace does not rely on rules or signatures, it can detect malicious activity that is anomalous even without full context of the specific device or asset in question.

For example, during the Fortinet exploitation late last year, the Darktrace Threat Research team were investigating a different Fortinet vulnerability, namely CVE 2024-23113, for exploitation when Mandiant released a security advisory around CVE 2024-47575, which aligned closely with Darktrace’s findings.

Retrospective analysis like this is used by Darktrace’s threat researchers to better understand detections across the threat landscape and to add additional context.

Below are ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

Trends in pre-cve exploitation

Often, the disclosure of an exploited vulnerability can be off the back of an incident response investigation related to a compromise by an advanced threat actor using a zero-day. Once the vulnerability is registered and publicly disclosed as having been exploited, it can kick off a race between the attacker and defender: attack vs patch.

Nation-state actors, highly skilled with significant resources, are known to use a range of capabilities to achieve their target, including zero-day use. Often, pre-CVE activity is “low and slow”, last for months with high operational security. After CVE disclosure, the barriers to entry lower, allowing less skilled and less resourced attackers, like some ransomware gangs, to exploit the vulnerability and cause harm. This is why two distinct types of activity are often seen: pre and post disclosure of an exploited vulnerability.

Darktrace saw this consistent story line play out during several of the Fortinet and PAN OS threat actor campaigns highlighted above last year, where nation-state actors were seen exploiting vulnerabilities first, followed by ransomware gangs impacting organizations [2].

The same applies with the recent SAP Netweaver exploitations being tied to a China based threat actor earlier this spring with subsequent ransomware incidents being observed [3].

Autonomous Response

Anomaly-based detection offers the benefit of identifying malicious activity even before a CVE is disclosed; however, security teams still need to quickly contain and isolate the activity.

For example, during the Ivanti chaining exploitation in the early part of 2025, a customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device.

This pre-CVE detection and response by Darktrace occurred 11 days before any public disclosure, demonstrating the value of an anomaly-based approach.

In some cases, customers have even reported that Darktrace stopped malicious exploitation of devices several days before a public disclosure of a vulnerability.

For example, During the ConnectWise exploitation, a customer informed the team that Darktrace had detected malicious software being installed via remote access. Upon further investigation, four servers were found to be impacted, while Autonomous Response had blocked outbound connections and enforced patterns of life on impacted devices.

Conclusion

By continuously analyzing behavioral patterns, systems can spot unusual activities and patterns from users, systems, and networks to detect anomalies that could signify a security breach.

Through ongoing monitoring and learning from these behaviors, anomaly-based security systems can detect threats that traditional signature-based solutions might miss, while also providing detailed insights into threat tactics, techniques, and procedures (TTPs). This type of behavioral intelligence supports pre-CVE detection, allows for a more adaptive security posture, and enables systems to evolve with the ever-changing threat landscape.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO), Emma Fougler (Global Threat Research Operations Lead), Ryan Traill (Analyst Content Lead)

References and further reading:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

Related Darktrace blogs:

*Self-reported by customer, confirmed afterwards.

**Updated January 2024 blog now reflects current findings

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI