Blog
/
/
July 11, 2024

GuLoader: Evolving Tactics in Latest Campaign Targeting European Industry

Cado Security Labs identified a GuLoader campaign targeting European industrial companies via spearphishing emails with compressed batch files. This malware uses obfuscated PowerShell scripts and shellcode with anti-debugging techniques to establish persistence and inject into legitimate processes, to deliver Remote Access Trojans. GuLoader's ongoing evolution highlights the need for robust security.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tara Gould
Threat Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
11
Jul 2024

Introduction: GuLoader

Researchers from Cado Security Labs (now part of Darktrace) recently discovered a  campaign targeting European industrial and engineering companies. GuLoader is an evasive shellcode downloader used to deliver Remote Access Trojans (RAT) that has been used by threat actors since 2019 and continues to advance. 

Figure 1

Initial access

Cado identified a number of spearphishing emails sent to electronic manufacturing, engineering and industrial companies in European countries including Romania, Poland, Germany and Kazakhstan. The emails typically include order inquiries and contain an archive file attachment (iso, 7z, gzip, rar). The emails are sent from various email addresses including from fake companies and compromised accounts. The emails typically hijack an existing email thread or request information about an order. 

PowerShell  

The first stage of GuLoader is a batch file that is compressed in the archive from the email attachment. As shown in Image 2, the batch file contains an obfuscated PowerShell script, which is done to evade detection.

Batch file
Figure 2: Obfuscated PowerShell

The obfuscated script contains strings that are deobfuscated through a function “Boendes” (in this sample) that contains a for loop that takes every fifth character, with the rest of the characters being junk. After deobfuscating, the functionality of the script is clearer. These values can be retrieved by debugging the script, however deobfuscating with Script 1 in the Scripts section, makes it easier to read for static analysis.

Deobfuscated Powershell
Figure 3 - Deobfuscated PowerShell

This Powershell script contains the function “Aromastofs” that is used to invoke the provided expressions. A secondary file is downloaded from careerfinder[.]ro and saved as “Knighting.Pro” in the user’s AppData/Roaming folder. The content retrieved from “Kighting.Pro” is decoded from Base64, converted to ASCII and selected from position 324537, with the length 29555. This is stored as “$Nongalactic” and contains more Powershell. 

Second Powershell script
Figure 4 - Second PowerShell script
Deobfuscated Secondary Powershell
Figure 5 - Deobfuscated Secondary PowerShell

As seen in Image 5, the secondary PowerShell is obfuscated in the same manner as before with the function “Boendes”. The script begins with checking which PowerShell is being used 32 or 64 bit. If 64 bit is in use, a 32 bit PowerShell process is spawned to execute the script, and to enable 32 bit processes later in the chain. 

The function named “Brevsprkkernes” is a secondary obfuscation function. The function takes the obfuscated hex string, converts to a byte array, applies XOR with a key of 173 and converts to ASCII. This obfuscation is used to evade detection and analysis more difficult. Again, these values can be retrieved with debugging; however for readability, using Script 2 in the Scripts section makes it easier to read. 

Obfuscated Hex Strings
Figure 6: Obfuscated Hex Strings
Deobfuscated PowersShell Strings
Figure 7 - Deobfuscated PowerShell Strings
Deobfuscated Process Injection
Figure 8: Deobfuscated Process Injection

The second PowerShell script contains functionality to allocate memory via VirtualAlloc and to execute shellcode. VirtualAlloc is a native Windows API function that allows programs to allocate, reserve, or commit memory in a specified process. Threat actors commonly use VirtualAlloc to allocate memory for malicious code execution, making it harder for security solutions to detect or prevent code injection. The variable “$Bakteriekulturs” contains the bytes that were stored in “AppData/Roaming/Knighting.Pro” and converted from Base64 in the first part of the PowerShell Script. Marshall::Copy is used to copy the first 657 bytes of that file, which is the first shellcode. Marshall.Copy is a method that enables the transfer of data between unmanaged memory and managed arrays, allowing data exchange between managed and unmanaged code. Marshal.Copy is typically abused to inject or manipulate malicious payloads in memory, bypassing traditional detection by directly accessing and modifying memory regions used by applications. Marshall::Copy is used again to copy bytes 657 to 323880 as a second shellcode. 

First Shellcode
Figure 9: First Shellcode

The first shellcode includes multiple anti-debugging techniques that make static and dynamic analysis difficult. There have been multiple evolutions of GuLoader’s evasive techniques that have been documented [1]. The main functionality of the first shellcode is to load and decrypt the second shellcode. The second shellcode adds the original PowerShell script as a Registry Key “Mannas” in HKCU/Software/Procentagiveless for persistence, with the path to PowerShell 32 bit executable stored as “Frenetic” in HKCU\Environment; however, these values change per sample. 

Registry Key created for PowerShell Script
Figure 10 - Registry Key created for PowerShell Script
PowerShell bit added to Registry
Figure 11 - PowerShell 32 bit added to Registry

The second shellcode is injected into the legitimate “msiexec.exe” process and appears to be reaching out to a domain to retrieve an additional payload, however at the time of analysis this request returns a 404. Based on previous research of GuLoader, the final payload is usually a RAT including Remcos, NetWire, and AgentTesla.[2]

msiexec abused to retrieve additional payload
Figure 12  - msiexec abused to retrieve additional payload

Key Takeaway

Guloader malware continues to adapt its techniques to evade detection to deliver RATs. Threat actors are continually targeting specific industries in certain countries. Its resilience highlights the need for proactive security measures. To counter Guloader and other threats, organizations must stay vigilant and employ a robust security plan.

Scripts

Script 1 to deobfuscate junk characters 

import re 
import argparse 
import os 
 
def deobfuscate_powershell(input_file, output_file): 
  try: 
      with open(input_file, 'r', encoding='utf-8') as f: 
          text = f.read() 
 
      function_name_match = re.search(r"function\s+(\w+)\s*\(", text) 
      if not function_name_match: 
          print("Could not find the obfuscation function name in the file.") 
          return 
      
      function_name = function_name_match.group(1) 
      print(f"Detected obfuscation function name: {function_name}") 
 
      obfuscated_pattern = rf"(?<={function_name} ')(.*?)(?=')" 
      matches = re.findall(obfuscated_pattern, text) 
 
      for match in matches: 
          deobfuscated = match[4::5] 
          full_obfuscated_call = f"{function_name} '{match}'" 
          text = text.replace(full_obfuscated_call, deobfuscated) 
 
      with open(output_file, 'w', encoding='utf-8') as f: 
          f.write(text) 
 
      print(f"Deobfuscation complete. Output saved to {output_file}") 
 
  except Exception as e: 
      print(f"An error occurred!: {e}") 
 
if __name__ == "__main__": 
  parser = argparse.ArgumentParser(description="Deobfuscate an obfuscated PowerShell file.") 
  parser.add_argument("input_file", help="Path to the obfuscated PowerShell file.") 
  parser.add_argument("output_file", nargs='?', help="Path to save the deobfuscated file. Default is 'deobfuscated_powershell.ps1' in the same directory.", default=None) 
 
  args = parser.parse_args() 
 
  if args.output_file is None: 
      output_file = os.path.splitext(args.input_file)[0] + "_deobfuscated.ps1" 
  else: 
      output_file = args.output_file 
 
  deobfuscate_powershell(args.input_file, output_file) 

Script 2 to deobfuscate hex strings obfuscation (note this will need values changed based on sample)

import re 
import argparse 
 
def brevsprkkernes(spackle): 
  if not all(c in'0123456789abcdefABCDEF'for c in spackle): 
      return f"Invalid hex: {spackle}" 
  paronomasian = 2 
  polyurethane = bytearray(len(spackle) // 2) 
 
  for forstyrrets in range(0, len(spackle), paronomasian): 
      try: 
          polyurethane[forstyrrets // 2] = int(spackle[forstyrrets:forstyrrets + 2], 16) 
          polyurethane[forstyrrets // paronomasian] ^= 173 
      except ValueError: 
          return f"Error processing hex: {spackle}" 
 
  return polyurethane.decode('ascii', errors='ignore') 
 
def process_file(input_file, output_file): 
  with open(input_file, 'r') as infile: 
      content = infile.read() 
 
  def replace_function(match): 
      hex_string = match.group(1).strip() 
      result = brevsprkkernes(hex_string) 
      return f"Brevsprkkernes '{result}'" 
 
  updated_content = re.sub(r"Brevsprkkernes\s*['\"]?([0-9A-Fa-f]+)['\"]?", replace_function, content) 
 
  with open(output_file, 'w') as outfile: 
      outfile.write(updated_content) 
 
if __name__ == "__main__": 
  parser = argparse.ArgumentParser(description="Process a PowerShell file and replace hex strings.") 
  parser.add_argument("input_file", help="Path to the input file.") 
  parser.add_argument("output_file", help="Path to save the deobufuscated file.") 
  args = parser.parse_args() 
 
  process_file(args.input_file, args.output_file) 

Indicators of compromise (IoCs)

GuLoader scripts

ZW_PCCE-010023024001.bat  36a9a24404963678edab15248ca95a4065bdc6a84e32fcb7a2387c3198641374  

ORDER_1ST.bat  26500af5772702324f07c58b04ff703958e7e0b57493276ba91c8fa87b7794ff  

IMG465244247443 GULF ORDER Opmagasinering.cmd  40b46bae5cca53c55f7b7f941b0a02aeb5ef5150d9eff7258c48f92de5435216  

EXSP 5634 HISP9005 ST MSDS DOKUME74247linierelet.bat  e0d9ebe414aca4f6d28b0f1631a969f9190b6fb2cf5599b99ccfc6b7916ed8b3  

LTEXSP 5634 HISP9005 ST MSDS DOKUME74247liniereletbrunkagerne.bat 4c697bdcbe64036ba8a79e587462960e856a37e3b8c94f9b3e7875aeb2f91959  

Quotation_final_buy_order_list_2024_po_nos_ART125673211020240000000000024.bat661f5870a5d8675719b95f123fa27c46bfcedd45001ce3479a9252b653940540  

MEC20241022001.bat  33ed102236533c8b01a224bd5ffb220cecc32900285d2984d4e41803f1b2b58d  

nMEC20241022001.iso  9617fa7894af55085e09a06b1b91488af37b8159b22616dfd5c74e6b9a081739  

Gescanneerde lijst met artikelen nr. 654398.bat  f5feabf1c367774dc162c3e29b88bf32e48b997a318e8dd03a081d7bfe6d3eb5  

DHL_Shipping_Invoices_Awb_BL_000000000102220242247820020031808174Global180030010222024.cmd f78319fcb16312d69c6d2e42689254dff3cb875315f7b2111f5c3d2b4947ab50  

Order Confirmation.bat  949cdd89ed5fb2da03c53b0e724a4d97c898c62995e03c48cbd8456502e39e57  

SKM_0001810-01-2024-GL-3762.bat  9493ad437ea4b55629ee0a8d18141977c2632de42349a995730112727549f40e  

21102024_0029_18102024_SKM_0001810-01-2024-GL-3762.iso  535dd8d9554487f66050e2f751c9f9681dadae795120bb33c3db9f71aafb472c  

\Device\CdRom1\MARSS-FILTRY_ZW015010024.BAT  e5ebe4d8925853fc1f233a5a6f7aa29fd8a7fa3a8ad27471c7d525a70f4461b6  

Myologist.cmd  51244e77587847280079e7db8cfdff143a16772fb465285b9098558b266c6b3f  

SKU_0001710-1-2024-SX-3762.bat  643cd5ba1ac50f5aa2a4c852b902152ffc61916dc39bd162f20283a0ecef39fe  

Stamcafeernes.cmd  54b8b9c01ce6f58eb6314c67f3acb32d7c3c96e70c10b9d35effabb7e227952e  

C:\Users\user\AppData\Local\Temp\j4phhdbc.lti\Bank details Form.bat  c1f810194395ff53044e3ef87829f6dff63a283c568be4a83088483b6c043ec8  

SKGCRO COMANDA FAB SRL M60_647746748846748347474.bat  8dd5fd174ee703a43ab5084fdaba84d074152e46b84d588bf63f9d5cd2f673d1  

DHL_Shipping_Invoices_Awb_BL_000000000101620242247820020031808174Global180030010162024.bat bde5f995304e327d522291bf9886c987223a51a299b80ab62229fcc5e9d09f62  

Ciwies.cmd  b1be65efa06eb610ae0426ba7ac7f534dcb3090cd763dc8642ca0ede7a339ce7  

Zamówienie Agotech Begyndelsesord.cmd  18c0a772f0142bc8e5fb0c8931c0ba4c9e680ff97d7ceb8c496f68dea376f9da  

SKM_0001810-01-2024-GL-3762.iso  4a4c0918bdacd60e792a814ddacc5dc7edb83644268611313cb9b453991ac628  

C:\Users\user\AppData\Local\Temp\Stemmeslugerens.bat  8bedbdaa09eefac7845278d83a08b17249913e484575be3a9c61cf6c70837fd2  

Agotech Zamówienie Fjeldkammes325545235562377.bat  ff6c4c8d899df66b551c84124e73c1f3ffa04a4d348940f983cf73b2709895d3  

Agotech Zamówienie Fjeldkammes3255452355623.bat  f3e046a7769b9c977053dd32ebc1b0e1bbfe3c61789d2b8d54e51083c3d0bed5  

SKU_0001710-1-2024-SX-3762.iso  0546b035a94953d33a5c6d04bdc9521b49b2a98a51d38481b1f35667f5449326  

SKU_0001710-1-2024-SX-3762.bat  4f1b5d4bb6d0a7227948fb7ebb7765f3eb4b26288b52356453b74ea530111520  

DOKUMENTEN_TOBIAS.bat  038113f802ef095d8036e86e5c6b2cb8bc1529e18f34828bcf5f99b4cc012d6a  

IMEG238668289485293885823085802835025Urfjeld.bat  6977043d30d8c1c5024669115590b8fd154905e01ab1f2832b2408d1dc811164  

SKM_C250i24100408500.iso  6370cbcb1ac3941321f93dd0939d5daba0658fb8c85c732a6022cc0ec8f0f082  

SKU_0001710-1-2024-SX-3762.iso  7f06382b781a8ba0d3f46614f8463f8857f0ade67e0f77606b8d918909ad37c2  

\Device\CdRom1\ORDINE ELECTRICAS BC CORP PO EDC0969388.BAT  e98fa3828fa02209415640c41194875c1496bc6f0ca15902479b012243d37c47  

Quote Request #2359 Bogota.msg  0f0dfe8c5085924e5ab722fa01ea182569872532a6162547a2e87a1d2780f902  

ORDER.1ST.bat  48dca5f3a12d3952531b05b556c30accafbf9a3c6cda3ec517e4700d5845ab61  

Fortryl105.cmd  f43b78e4dc3cba2ee9c6f0f764f97841c43419059691d670ca930ce84fb7143b  

SMX-0002607-1-2024-UP-3762.iso  a60dbbe88a1c4857f009a3c06a2641332d41dfd89726dd5f2c6e500f7b25b751

Quotation_final_buy_order_list_2024_po_nos_ART1256731610202400000000000.cmd efd80337104f2acde5c8f3820549110ad40f1aa9b494da9a356938103bda82e7

a60dbbe88a1c4857f009a3c06a2641332d41dfd89726dd5f2c6e500f7b25b751.iso 0327db7b754a16a7ae29265e7d8daed7a1caa4920d5151d779e96cd1536f2fbe  

MARSS-FILTRY_ZW015010024.iso c415127bde80302a851240a169fff0592e864d2f93e9a21c7fd775fdb4788145

SKM_C250i24100408500.bat 36c464519a4cce8d0fcdb22a8974923fd51d915075eba9e62ade54a9c396844d  

UPM-0002607-1-2024-UP-3762.iso  e9fc754844df1a7196a001ac3dfbcf28b80397a718a3ceb8d397378a6375ff62  

Comanda KOMARON TRADE SRL 435635Lukketid.bat 1bf09bcb5bfa440fc6ce5c1d3f310fb274737248bf9acdd28bea98c9163a745a  

311861751714730477170144.bat f87448d722e160584e40feaad0769e170056a21588679094f7d58879cdb23623  

Estimate_buy_product_purchase_order_import_list_10_10_2024_000000101024.cmd f20670ed0cdc2d9a2a75884548e6e6a3857bbf66cfbfb4afe04a3354da9067c9  

PAYMENT TERM.bat 4c90504c86f1e77b0a75a1c7408adf1144f2a0e3661c20f2bf28d168e3408429  

Arbitrre.cmd  8ef4cb5ad7d5053c031690b9d04d64ba5d0d90f7bf8ba5e74cb169b5388e92c5  

KZЗапрос продукта SKM_32532667622352352Arvehygiejnikernes.bat 4ddd3369a51621b0009b6d993126fcb74b52e72f8cacd71fcbc401cda03108cb  

Order_AP568.bat fda4e04894089be87f520144d8a6141074d63d33b29beb28fd042b0ecc06fbbc  

C:\Users\user\Documents\ConnectWiseControl\Temp\Blodprocenternes.cmd e5f5d9855be34b44ad4c9b1c5722d1a6dff2f4a6878a874df1209d813aea7094  

Productivenesses.cmd a7268e906b86f7c1bb926278bf88811cb12189de0db42616e5bbb3dc426a4ef5  

Doktriner.cmd 74d468acd0493a6c5d72387c8e225cc0243ae1a331cd1e2d38f75ed8812347dd  

final_buy_product_purchase_order_import_list_11_10_2024_000000111024.cmd a2127d63bc0204c17d4657e5ae6930cab6ab33ae3e65b82e285a8757f39c4da9  

ORDER_U769.bat b45d9b5dbe09b2ca45d66432925842b0f698c9d269d3c7b5148cc26bdc2a92d0  

Beschwerde-Rechtsanwalt.bat 229c4ce294708561801b16eed5a155c8cfe8c965ea99ac3cfb4717a35a1492f3  

upit nr5634 10_08_2024.cmd 5854d9536371389fb0f1152ebc1479266d36ec4e06b174619502a6db1b593d71  

C:\Users\user\AppData\Local\Temp\Doktriner.cmd 140dcb39308d044e3e90610c65a08e0abc6a3ac22f0c9797971f0c652bb29add  

Fedtsyresammenstning.cmd 0b1c44b202ede2e731b2d9ee64c2ce333764fbff17273af831576a09fc9debfa  

HENIKENPLANT PROJECT PROPOSAL BID_24-0976·pdf.cmd 31a72d94b14bf63b07d66d023ced28092b9253c92b6e68397469d092c2ffb4a6  

MAIN ORDER.bat 85d1877ceda7c04125ca6383228ee158062301ae2b4e4a4a698ef8ed94165c7c  

Narudzba ACH0036173.bat 8d7324d66484383eba389bc2a8a6d4e9c4cb68bfec45d887b7766573a306af68  

Sludger.cmd 45b7b8772d9fe59d7df359468e3510df1c914af41bd122eeb5a408d045399a14  

Glasmester.bat b0e69f895f7b0bc859df7536d78c2983d7ed0ac1d66c243f44793e57d346049d  

PERMINTAAN ANGGARAN (Universitas IPB) ID177888·pdf.cmd 09a3bb4be0a502684bd37135a9e2cbaa3ea0140a208af680f7019811b37d28d6  

C:\Users\user\Documents\ConnectWiseControl\Temp\Bidcock.cmd 0996e7b37e8b41ff0799996dd96b5a72e8237d746c81e02278d84aa4e7e8534e  

PO++380.101483.bat a9af33c8a9050ee6d9fe8ce79d734d7f28ebf36f31ad8ee109f9e3f992a8d110  

Network IOCs

91[.]109.20.161

137[.]184.191.215

185[.]248.196.6

hxxps://filedn[.]com/lK8iuOs2ybqy4Dz6sat9kSz/Frihandelsaftalen40.fla

hxxps://careerfinder[.]ro/vn/Traurigheder[.]sea

hxxp://inversionesevza[.]com/wp-includes/blocks_/Dekupere.pcz

hxxps://rareseeds[.]zendesk[.]com/attachments/token/G9SQnykXWFAnrmBcy8MzhciEs/?name=PO++380.101483.bat

Detection

Yara rule

rule GuLoader_Obfuscated_Powershell 
{ 
   meta: 
       description = "Detects Obfuscated GuLoader Powershell Scripts" 
       author = "tgould@cadosecurity.com" 
       date = "2024-10-14" 
   strings: 
      $hidden_window = { 7374617274202f6d696e20706f7765727368656c6c2e657865202d77696e646f777374796c652068696464656e2022 } 
      $for_loop = /for\s*\(\s*\$[a-zA-Z0-9_]+\s*=\s*\d+;\s*\$[a-zA-Z0-9_]+\s*-lt\s*\$[a-zA-Z0-9_]+\s*;\s*\$[a-zA-Z0-9_]+\s*\+=\s*\d+\s*\)/ 
   condition: 
      $for_loop and $hidden_window 

MITRE ATT&CK

T1566.001  Phishing: Malicious Attachment  

T1055 Process Injection  

T1204.002  User Execution: Malicious File  

T1547.001  Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder  

T1140  Deobfuscate/Decode Files or Information  

T1622  Debugger Evasion  

T1001.001  Junk Code  

T1105  Ingress Tool Transfer  

T1059.001  Command and Scripting Interpreter: Powershell  

T1497.003  Virtualization/Sandbox Evasion: Time Based Evasion  

T1071.001  Application Layer Protocol: Web Protocols

References:

[1] https://www.crowdstrike.com/en-us/blog/guloader-dissection-reveals-new-anti-analysis-techniques-and-code-injection-redundancy/  

[2] https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-malware/guloader-malware/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tara Gould
Threat Researcher

More in this series

No items found.

Blog

/

Network

/

October 30, 2025

WSUS Exploited: Darktrace’s Analysis of Post-Exploitation Activities Related to CVE-2025-59287

Default blog imageDefault blog image

Introduction

On October 14, 2025, Microsoft disclosed a new critical vulnerability affecting the Windows Server Update Service (WSUS), CVE-2025-59287.  Exploitation of the vulnerability could allow an unauthenticated attacker to remotely execute code [1][6].

WSUS allows for centralized distribution of Microsoft product updates [3]; a server running WSUS is likely to have significant privileges within a network making it a valuable target for threat actors. While WSUS servers are not necessarily expected to be open to the internet, open-source intelligence (OSINT) has reported  thousands of publicly exposed instances that may be vulnerable to exploitation [2].

Microsoft’s initial ‘Patch Tuesday’ update for this vulnerability did not fully mitigate the risk, and so an out-of-band update followed on October 23 [4][5] . Widespread exploitation of this vulnerability started to be observed shortly after the security update [6], prompting CISA to add CVE-2025-59287 to its Known Exploited Vulnerability Catalog (KEV) on October 24 [7].

Attack Overview

The Darktrace Threat Research team have recently identified multiple potential cases of CVE-2025-59287 exploitation, with two detailed here. While the likely initial access method is consistent across the cases, the follow-up activities differed, demonstrating the variety in which such a CVE can be exploited to fulfil each attacker’s specific goals.

The first signs of suspicious activity across both customers were detected by Darktrace on October 24, the same day this vulnerability was added to CISA’s KEV. Both cases discussed here involve customers based in the United States.

Case Study 1

The first case, involving a customer in the Information and Communication sector, began with an internet-facing device making an outbound connection to the hostname webhook[.]site. Observed network traffic indicates the device was a WSUS server.

OSINT has reported abuse of the workers[.]dev service in exploitation of CVE-2025-59287, where enumerated network information gathered through running a script on the compromised device was exfiltrated using this service [8].

In this case, the majority of connectivity seen to webhook[.]site involved a PowerShell user agent; however, cURL user agents were also seen with some connections taking the form of HTTP POSTs. This connectivity appears to align closely with OSINT reports of CVE-2025-59287 post-exploitation behaviour [8][9].

Connections to webhook[.]site continued until October 26. A single URI was seen consistently until October 25, after which the connections used a second URI with a similar format.

Later on October 26, an escalation in command-and-control (C2) communication appears to have occurred, with the device starting to make repeated connections to two rare workers[.]dev subdomains (royal-boat-bf05.qgtxtebl.workers[.]dev & chat.hcqhajfv.workers[.]dev), consistent with C2 beaconing. While workers[.]dev is associated with the legitimate Cloudflare Workers service, the service is commonly abused by malicious actors for C2 infrastructure. The anomalous nature of the connections to both webhook[.]site and workers[.]dev led to Darktrace generating multiple alerts including high-fidelity Enhanced Monitoring alerts and alerts for Darktrace’s Autonomous Response.

Infrastructure insight

Hosted on royal-boat-bf05.qgtxtebl.workers[.]dev is a Microsoft Installer file (MSI) named v3.msi.

Screenshot of v3.msi content.
Figure 1: Screenshot of v3.msi content.

Contained in the MSI file is two Cabinet files named “Sample.cab” and “part2.cab”. After extracting the contents of the cab files, a file named “Config” and a binary named “ServiceEXE”. ServiceEXE is the legitimate DFIR tool Velociraptor, and “Config” contains the configuration details, which include chat.hcqhajfv.workers[.]dev as the server_url, suggesting that Velociraptor is being used as a tunnel to the C2. Additionally, the configuration points to version 0.73.4, a version of Velociraptor that is vulnerable to CVE-2025-6264, a privilege escalation vulnerability.

 Screenshot of Config file.
Figure 2: Screenshot of Config file.

Velociraptor, a legitimate security tool maintained by Rapid7, has been used recently in malicious campaigns. A vulnerable version of tool has been used by threat actors for command execution and endpoint takeover, while other campaigns have used Velociraptor to create a tunnel to the C2, similar to what was observed in this case [10] .

The workers[.]dev communication continued into the early hours of October 27. The most recent suspicious behavior observed on the device involved an outbound connection to a new IP for the network - 185.69.24[.]18/singapure - potentially indicating payload retrieval.

The payload retrieved from “/singapure” is a UPX packed Windows binary. After unpacking the binary, it is an open-source Golang stealer named “Skuld Stealer”. Skuld Stealer has the capabilities to steal crypto wallets, files, system information, browser data and tokens. Additionally, it contains anti-debugging and anti-VM logic, along with a UAC bypass [11].

A timeline outlining suspicious activity on the device alerted by Darktrace.
Figure 3: A timeline outlining suspicious activity on the device alerted by Darktrace.

Case Study 2

The second case involved a customer within the Education sector. The affected device was also internet-facing, with network traffic indicating it was a WSUS server

Suspicious activity in this case once again began on October 24, notably only a few seconds after initial signs of compromise were observed in the first case. Initial anomalous behaviour also closely aligned, with outbound PowerShell connections to webhook[.]site, and then later connections, including HTTP POSTs, to the same endpoint with a cURL user agent.

While Darktrace did not observe any anomalous network activity on the device after October 24, the customer’s security integration resulted in an additional alert on October 27 for malicious activity, suggesting that the compromise may have continued locally.

By leveraging Darktrace’s security integrations, customers can investigate activity across different sources in a seamless manner, gaining additional insight and context to an attack.

A timeline outlining suspicious activity on the device alerted by Darktrace.
Figure 4: A timeline outlining suspicious activity on the device alerted by Darktrace.

Conclusion

Exploitation of a CVE can lead to a wide range of outcomes. In some cases, it may be limited to just a single device with a focused objective, such as exfiltration of sensitive data. In others, it could lead to lateral movement and a full network compromise, including ransomware deployment. As the threat of internet-facing exploitation continues to grow, security teams must be prepared to defend against such a possibility, regardless of the attack type or scale.

By focussing on detection of anomalous behaviour rather than relying on signatures associated with a specific CVE exploit, Darktrace is able to alert on post-exploitation activity regardless of the kind of behaviour seen. In addition, leveraging security integrations provides further context on activities beyond the visibility of Darktrace / NETWORKTM, enabling defenders to investigate and respond to attacks more effectively.

With adversaries weaponizing even trusted incident response tools, maintaining broad visibility and rapid response capabilities becomes critical to mitigating post-exploitation risk.

Credit to Emma Foulger (Global Threat Research Operations Lead), Tara Gould (Threat Research Lead), Eugene Chua (Principal Cyber Analyst & Analyst Team Lead), Nathaniel Jones (VP, Security & AI Strategy, Field CISO),

Edited by Ryan Traill (Analyst Content Lead)

Appendices

References

1.        https://nvd.nist.gov/vuln/detail/CVE-2025-59287

2.    https://www.bleepingcomputer.com/news/security/hackers-now-exploiting-critical-windows-server-wsus-flaw-in-attacks/

3.    https://learn.microsoft.com/en-us/windows-server/administration/windows-server-update-services/get-started/windows-server-update-services-wsus

4.    https://www.cisa.gov/news-events/alerts/2025/10/24/microsoft-releases-out-band-security-update-mitigate-windows-server-update-service-vulnerability-cve

5.    https://msrc.microsoft.com/update-guide/vulnerability/CVE-2025-59287

6.    https://thehackernews.com/2025/10/microsoft-issues-emergency-patch-for.html

7.    https://www.cisa.gov/known-exploited-vulnerabilities-catalog

8.    https://www.huntress.com/blog/exploitation-of-windows-server-update-services-remote-code-execution-vulnerability

9.    https://unit42.paloaltonetworks.com/microsoft-cve-2025-59287/

10. https://blog.talosintelligence.com/velociraptor-leveraged-in-ransomware-attacks/

11. https://github.com/hackirby/skuld

Darktrace Model Detections

·       Device / New PowerShell User Agent

·       Anomalous Connection / Powershell to Rare External

·       Compromise / Possible Tunnelling to Bin Services

·       Compromise / High Priority Tunnelling to Bin Services

·       Anomalous Server Activity / New User Agent from Internet Facing System

·       Device / New User Agent

·       Device / Internet Facing Device with High Priority Alert

·       Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

·       Anomalous Server Activity / Rare External from Server

·       Compromise / Agent Beacon (Long Period)

·       Device / Large Number of Model Alerts

·       Compromise / Agent Beacon (Medium Period)

·       Device / Long Agent Connection to New Endpoint

·       Compromise / Slow Beaconing Activity To External Rare

·       Security Integration / Low Severity Integration Detection

·       Antigena / Network / Significant Anomaly / Antigena Alerts Over Time Block

·       Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

·       Antigena / Network / External Threat / Antigena Suspicious Activity Block

·       Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

List of Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

o   royal-boat-bf05.qgtxtebl.workers[.]dev – Hostname – Likely C2 Infrastructure

o   royal-boat-bf05.qgtxtebl.workers[.]dev/v3.msi - URI – Likely payload

o   chat.hcqhajfv.workers[.]dev – Hostname – Possible C2 Infrastructure

o   185.69.24[.]18 – IP address – Possible C2 Infrastructure

o   185.69.24[.]18/bin.msi - URI – Likely payload

o   185.69.24[.]18/singapure - URI – Likely payload

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead

Blog

/

Proactive Security

/

October 24, 2025

Patch Smarter, Not Harder: Now Empowering Security Teams with Business-Aligned Threat Context Agents

Default blog imageDefault blog image

Most risk management programs remain anchored in enumeration: scanning every asset, cataloging every CVE, and drowning in lists that rarely translate into action. Despite expensive scanners, annual pen tests, and countless spreadsheets, prioritization still falters at two critical points.

Context gaps at the device level: It’s hard to know which vulnerabilities actually matter to your business given existing privileges, what software it runs, and what controls already reduce risk.

Business translation: Even when the technical priority is clear, justifying effort and spend in financial terms—especially across many affected devices—can delay action. Especially if it means halting other areas of the business that directly generate revenue.

The result is familiar: alert fatigue, “too many highs,” and remediation that trails behind the threat landscape. Darktrace / Proactive Exposure Management addresses this by pairing precise, endpoint‑level context with clear, financial insight so teams can prioritize confidently and mobilize faster.

A powerful combination: No-Telemetry Endpoint Agent + Cost-Benefit Analysis

Darktrace / Proactive Exposure Management now uniquely combines technical precision with business clarity in a single workflow.  With this release, Darktrace / Proactive Exposure Management delivers a more holistic approach, uniting technical context and financial insight to drive proactive risk reduction. The result is a single solution that helps security teams stay ahead of threats while reducing noise, delays, and complexity.

  • No-Telemetry Endpoint: Collects installed software data and maps it to known CVEs—without network traffic—providing device-level vulnerability context and operational relevance.
  • Cost-Benefit Analysis for Patching: Calculates ROI by comparing patching effort with potential exploit impact, factoring in headcount time, device count, patch difficulty, and automation availability.

Introducing the No-Telemetry Endpoint Agent

Darktrace’s new endpoint agent inventories installed software on devices and maps it to known CVEs without collecting network data so you can prioritize using real device context and available security controls.

By grounding vulnerability findings in the reality of each endpoint, including its software footprint and existing controls, teams can cut through generic severity scores and focus on what matters most. The agent is ideal for remote devices, BYOD-adjacent fleets, or environments standardizing on Darktrace, and is available without additional licensing cost.

Darktrace / Proactive Exposure Management user interface
Figure 1: Darktrace / Proactive Exposure Management user interface

Built-In Cost-Benefit Analysis for Patching

Security teams often know what needs fixing but stakeholders need to understand why now. Darktrace’s new cost-benefit calculator compares the total cost to patch against the potential cost of exploit, producing an ROI for the patch action that expresses security action in clear financial terms.

Inputs like engineer time, number of affected devices, patch difficulty, and automation availability are factored in automatically. The result is a business-aligned justification for every patching decision—helping teams secure buy-in, accelerate approvals, and move work forward with one-click ticketing, CSV export, or risk acceptance.

Darktrace / Proactive Exposure Management Cost Benefit Analysis
Figure 2: Darktrace / Proactive Exposure Management Cost Benefit Analysis

A Smarter, Faster Approach to Exposure Management

Together, the no-telemetry endpoint and Cost–Benefit Analysis advance the CTEM motion from theory to practice. You gain higher‑fidelity discovery and validation signals at the device level, paired with business‑ready justification that accelerates mobilization. The result is fewer distractions, clearer priorities, and faster measurable risk reduction. This is not from chasing every alert, but by focusing on what moves the needle now.

  • Smarter Prioritization: Device‑level context trims noise and spotlights the exposures that matter for your business.
  • Faster Decisions: Built‑in ROI turns technical urgency into executive clarity—speeding approvals and action.
  • Practical Execution: Privacy‑conscious endpoint collection and ticketing/export options fit neatly into existing workflows.
  • Better Outcomes: Close the loop faster—discover, prioritize, validate, and mobilize—on the same operating surface.

Committed to innovation

These updates are part of the broader Darktrace release, which also included:

1. Major innovations in cloud security with the launch of the industry’s first fully automated cloud forensics solution, reinforcing Darktrace’s leadership in AI-native security.

2. Darktrace Network Endpoint eXtended Telemetry (NEXT) is revolutionizing NDR with the industry’s first mixed-telemetry agent using Self-Learning AI.

3. Improvements to our OT product, purpose built for industrial infrastructure, Darktrace / OT now brings dedicated OT dashboard, segmentation-aware risk modeling, and expanded visibility into edge assets and automation protocols.

Join our Live Launch Event

When? 

December 9, 2025

What will be covered?

Join our live broadcast to experience how Darktrace is eliminating blind spots for detection and response across your complete enterprise with new innovations in Agentic AI across our ActiveAI Security platform. Industry leaders from IDC will join Darktrace customers to discuss challenges in cross-domain security, with a live walkthrough reshaping the future of Network Detection & Response, Endpoint Detection & Response, Email Security, and SecOps in novel threat detection and autonomous investigations.

Continue reading
About the author
Kelland Goodin
Product Marketing Specialist
Your data. Our AI.
Elevate your network security with Darktrace AI