ブログ
/
Email
/
November 3, 2022

Uncover New Malicious Email Payloads in Google Translate

Discover how threat actors are concealing malicious email payloads within Google Translate domains. Learn how Darktrace responds to these attacks effectively.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Rachel Resnekov
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
03
Nov 2022

Darktrace recently detected a new technique used by threat actors to deliver malicious email payloads. The malicious link was observed hidden within a legitimate domain, namely Google Translate services. To understand its abusive capabilities, it is important to first understand a benign case of how these links are created.  

Google often provides a ‘Translate this page’ option for sites written in a different language to the default browser language.

Figure 1: A google search result for an international company E.g ‘Crédit Agricole’ gives the option to translate the page from French to English.
Figure 2: When clicked, the browser displays a link with a translate[.]goog domain, and the original domain, credit-agricole[.]fr, becomes the link’s subdomain.

When this feature is exploited by threat actors it can be particularly dangerous, as legacy security products that rely on ‘known’ or ‘safe’ domain-based detection are likely to register these emails as safe and provide no protective actions. If a recipient were to click on the malicious link, they could risk losing their credentials or even compromising their machine. 

 In contrast, Darktrace/Email has been able to consistently identify and action emails from such campaigns. This blog will discuss one of these events.

The Campaign 

The apparent motive in this attack was to harvest credentials and/or deploy malware on the recipient’s device. Credential harvesting can lead to the sale of credentials on the dark web, or the attacker may choose to leverage those credentials in subsequent attacks. Both harvesting credentials and deploying malware have severe potential ramifications, including but not limited to sensitive company data leaks and financial loss. 

During this attack, the threat actor sent similar emails to a group of recipients in a short space of time. The recipients were not normally associated with each other and Darktrace swiftly identified them as unsolicited bulk mail. The new technique that was leveraged included using Google’s translate services to share malicious links using legitimate seeming domains. The malicious host was visible within the subdomain ‘636416-selcdn-ru[.]translate[.]goog’.  

When clicked, the link displays a google translate page stating, “Can’t translate this page”. There is then a hyperlink, “Go to original page”, that brings the user to the malicious host- 636416[.]selcdn[.]ru. Finally, the host displays a fake webmail portal login. If a user engages, the attacker can harvest their credentials to either sell or use in subsequent attacks.

Figure 3- The Google Translate page that is displayed once clicking on the full link within the email. The hyperlink at the bottom of the image is where the user is redirected by clicking “Go to original page”. It is there that the fake webmail portal login is then displayed. 

Darktrace Coverage 

As the malicious emails contained links to ‘safe’ Google Translate domains, most email security products would not characterize the links as suspicious. However, Darktrace/Email levies hundreds of metrics to identify whether emails belong in a recipient’s inbox. In this case Darktrace highlighted anomalies including rare subdomains, links containing unknown redirects, emails from spoofed freemail accounts and senders that had sent a relatively large number of emails within a short time frame. Furthermore, the attacker had never sent any previous emails to the organization prior to this email campaign. 

On top of providing visibility, the RESPOND function of Darktrace/Email took action autonomously and instantaneously without any human confirmation required. These actions included locking links and holding malicious emails. 

Figure 4- Darktrace/Email overview tab shows the Anomaly Indicators section as well as the History, Association, and Validation information of this sender.

Figure 5 - The Darktrace RESPOND/Email model tab displays all models that triggered on the email and the associated actions. The most severe delivery action supersedes the others, so here the email was held. 

Concluding Thoughts 

Threat actors are continuously updating the way they deliver malicious payloads within emails. While this particular email campaign utilized Google Translate domains to hide malicious links, subsequent attacks may well be seen leveraging other legitimate domains. Companies are only as strong as their weakest link; a single compromised internal email account can be used to send phishing emails to internal recipients, collect sensitive company information, inject malware onto the device, and more. Security tools must evolve to focus on anomalies within the email, rather than relying on rules or signatures of previously seen attacks. Furthermore, email tools must be able to autonomously respond as soon as the malicious emails enter the company’s environment. Only with these precautions will the risks associated with malicious emails be mitigated. 

Thanks to Steven Haworth and Steven Sosa for their contributions.

Appendices 

Relevant Darktrace Model Detections

·      Association / Anomalous Association

·      Association / New Sender

·      Association / Unknown Sender

·      Association / Unlikely Recipient Association

·      High Antigena Anomaly [part of the RESPOND functionality]

·      Link / Low Link Association

·      Link / Low Link Association and Unknown Sender

·      Link / New Correspondent Classified Link

·      Link / New Unknown Redirect

·      Link / Open Redirect

·      Link / Visually Prominent Link

·      Spam / Unsolicited Bulk Mail

·      Spoof / Spoofed Freemail

·      Unusual / New Sender Wide Distribution

·      Unusual / Sender Surge

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Rachel Resnekov
Cyber Analyst

More in this series

No items found.

Blog

/

/

January 13, 2026

Runtime Is Where Cloud Security Really Counts: The Importance of Detection, Forensics and Real-Time Architecture Awareness

Default blog imageDefault blog image

Introduction: Shifting focus from prevention to runtime

Cloud security has spent the last decade focused on prevention; tightening configurations, scanning for vulnerabilities, and enforcing best practices through Cloud Native Application Protection Platforms (CNAPP). These capabilities remain essential, but they are not where cloud attacks happen.

Attacks happen at runtime: the dynamic, ephemeral, constantly changing execution layer where applications run, permissions are granted, identities act, and workloads communicate. This is also the layer where defenders traditionally have the least visibility and the least time to respond.

Today’s threat landscape demands a fundamental shift. Reducing cloud risk now requires moving beyond static posture and CNAPP only approaches and embracing realtime behavioral detection across workloads and identities, paired with the ability to automatically preserve forensic evidence. Defenders need a continuous, real-time understanding of what “normal” looks like in their cloud environments, and AI capable of processing massive data streams to surface deviations that signal emerging attacker behavior.

Runtime: The layer where attacks happen

Runtime is the cloud in motion — containers starting and stopping, serverless functions being called, IAM roles being assumed, workloads auto scaling, and data flowing across hundreds of services. It’s also where attackers:

  • Weaponize stolen credentials
  • Escalate privileges
  • Pivot programmatically
  • Deploy malicious compute
  • Manipulate or exfiltrate data

The challenge is complex: runtime evidence is ephemeral. Containers vanish; critical process data disappears in seconds. By the time a human analyst begins investigating, the detail required to understand and respond to the alert, often is already gone. This volatility makes runtime the hardest layer to monitor, and the most important one to secure.

What Darktrace / CLOUD Brings to Runtime Defence

Darktrace / CLOUD is purpose-built for the cloud execution layer. It unifies the capabilities required to detect, contain, and understand attacks as they unfold, not hours or days later. Four elements define its value:

1. Behavioral, real-time detection

The platform learns normal activity across cloud services, identities, workloads, and data flows, then surfaces anomalies that signify real attacker behavior, even when no signature exists.

2. Automated forensic level artifact collection

The moment Darktrace detects a threat, it can automatically capture volatile forensic evidence; disk state, memory, logs, and process context, including from ephemeral resources. This preserves the truth of what happened before workloads terminate and evidence disappears.

3. AI-led investigation

Cyber AI Analyst assembles cloud behaviors into a coherent incident story, correlating identity activity, network flows, and Cloud workload behavior. Analysts no longer need to pivot across dashboards or reconstruct timelines manually.

4. Live architectural awareness

Darktrace continuously maps your cloud environment as it operates; including services, identities, connectivity, and data pathways. This real-time visibility makes anomalies clearer and investigations dramatically faster.

Together, these capabilities form a runtime-first security model.

Why CNAPP alone isn’t enough

CNAPP platforms excel at pre deployment checks all the way down to developer workstations, identifying misconfigurations, concerning permission combinations, vulnerable images, and risky infrastructure choices. But CNAPP’s breadth is also its limitation. CNAPP is about posture. Runtime defense is about behavior.

CNAPP tells you what could go wrong; runtime detection highlights what is going wrong right now.

It cannot preserve ephemeral evidence, correlate active behaviors across domains, or contain unfolding attacks with the precision and speed required during a real incident. Prevention remains essential, but prevention alone cannot stop an attacker who is already operating inside your cloud environment.

Real-world AWS Scenario: Why Runtime Monitoring Wins

A recent incident detected by Darktrace / CLOUD highlights how cloud compromises unfold, and why runtime visibility is non-negotiable. Each step below reflects detections that occur only when monitoring behavior in real time.

1. External Credential Use

Detection: Unusual external source for credential use: An attacker logs into a cloud account from a never-before-seen location, the earliest sign of account takeover.

2. AWS CLI Pivot

Detection: Unusual CLI activity: The attacker switches to programmatic access, issuing commands from a suspicious host to gain automation and stealth.

3. Credential Manipulation

Detection: Rare password reset: They reset or assign new passwords to establish persistence and bypass existing security controls.

4. Cloud Reconnaissance

Detection: Burst of resource discovery: The attacker enumerates buckets, roles, and services to map high value assets and plan next steps.

5. Privilege Escalation

Detection: Anomalous IAM update: Unauthorized policy updates or role changes grant the attacker elevated access or a backdoor.

6. Malicious Compute Deployment

Detection: Unusual EC2/Lambda/ECS creation: The attacker deploys compute resources for mining, lateral movement, or staging further tools.

7. Data Access or Tampering

Detection: Unusual S3 modifications: They alter S3 permissions or objects, often a prelude to data exfiltration or corruption.

Only some of these actions would appear in a posture scan, crucially after the fact.
Every one of these runtime detections is visible only through real-time behavioral monitoring while the attack is in progress.

The future of cloud security Is runtime-first

Cloud defense can no longer revolve solely around prevention. Modern attacks unfold in runtime, across a fast-changing mesh of workloads, services, and — critically — identities. To reduce risk, organizations must be able to detect, understand, and contain malicious activity as it happens, before ephemeral evidence disappears and before attacker's pivot across identity layers.

Darktrace / CLOUD delivers this shift by turning runtime, the most volatile and consequential layer in the cloud, into a fully defensible control point through unified visibility across behavior, workloads, and identities. It does this by providing:

  • Real-time behavior detection across workloads and identity activity
  • Autonomous response actions for rapid containment
  • Automated forensic level artifact preservation the moment events occur
  • AI-driven investigation that separates weak signals from true attacker patterns
  • Live cloud environment insight to understand context and impact instantly

Cloud security must evolve from securing what might go wrong to continuously understanding what is happening; in runtime, across identities, and at the speed attackers operate. Unifying runtime and identity visibility is how defenders regain the advantage.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace

Blog

/

Network

/

January 12, 2026

Maduro Arrest Used as a Lure to Deliver Backdoor

Default blog imageDefault blog image

Introduction

Threat actors frequently exploit ongoing world events to trick users into opening and executing malicious files. Darktrace security researchers recently identified a threat group using reports around the arrest of Venezuelan President Nicolàs Maduro on January 3, 2025, as a lure to deliver backdoor malware.

Technical Analysis

While the exact initial access method is unknown, it is likely that a spear-phishing email was sent to victims, containing a zip archive titled “US now deciding what’s next for Venezuela.zip”. This file included an executable named “Maduro to be taken to New York.exe” and a dynamic-link library (DLL), “kugou.dll”.  

The binary “Maduro to be taken to New York.exe” is a legitimate binary (albeit with an expired signature) related to KuGou, a Chinese streaming platform. Its function is to load the DLL “kugou.dll” via DLL search order. In this instance, the expected DLL has been replaced with a malicious one with the same name to load it.  

DLL called with LoadLibraryW.
Figure 1: DLL called with LoadLibraryW.

Once the DLL is executed, a directory is created C:\ProgramData\Technology360NB with the DLL copied into the directory along with the executable, renamed as “DataTechnology.exe”. A registry key is created for persistence in “HKCU\Software\Microsoft\Windows\CurrentVersion\Run\Lite360” to run DataTechnology.exe --DATA on log on.

 Registry key added for persistence.
Figure 2. Registry key added for persistence.
Folder “Technology360NB” created.
Figure 3: Folder “Technology360NB” created.

During execution, a dialog box appears with the caption “Please restart your computer and try again, or contact the original author.”

Message box prompting user to restart.
Figure 4. Message box prompting user to restart.

Prompting the user to restart triggers the malware to run from the registry key with the command --DATA, and if the user doesn't, a forced restart is triggered. Once the system is reset, the malware begins periodic TLS connections to the command-and-control (C2) server 172.81.60[.]97 on port 443. While the encrypted traffic prevents direct inspection of commands or data, the regular beaconing and response traffic strongly imply that the malware has the ability to poll a remote server for instructions, configuration, or tasking.

Conclusion

Threat groups have long used geopolitical issues and other high-profile events to make malicious content appear more credible or urgent. Since the onset of the war in Ukraine, organizations have been repeatedly targeted with spear-phishing emails using subject lines related to the ongoing conflict, including references to prisoners of war [1]. Similarly, the Chinese threat group Mustang Panda frequently uses this tactic to deploy backdoors, using lures related to the Ukrainian war, conventions on Tibet [2], the South China Sea [3], and Taiwan [4].  

The activity described in this blog shares similarities with previous Mustang Panda campaigns, including the use of a current-events archive, a directory created in ProgramData with a legitimate executable used to load a malicious DLL and run registry keys used for persistence. While there is an overlap of tactics, techniques and procedures (TTPs), there is insufficient information available to confidently attribute this activity to a specific threat group. Users should remain vigilant, especially when opening email attachments.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

172.81.60[.]97
8f81ce8ca6cdbc7d7eb10f4da5f470c6 - US now deciding what's next for Venezuela.zip
722bcd4b14aac3395f8a073050b9a578 - Maduro to be taken to New York.exe
aea6f6edbbbb0ab0f22568dcb503d731  - kugou.dll

References

[1] https://cert.gov.ua/article/6280422  

[2] https://www.ibm.com/think/x-force/hive0154-mustang-panda-shifts-focus-tibetan-community-deploy-pubload-backdoor

[3] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

[4] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

Continue reading
About the author
Tara Gould
Malware Research Lead
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ