Blog
/
OT
/
June 11, 2025

Proactive OT Security: Lessons on Supply Chain Risk Management from a Rogue Raspberry Pi

Darktrace detected a rogue Raspberry PI device that had been left by a Manufacturing customer’s vendor in the customer’s ICS network. The convergence between supply chain risk and insider risk highlights how important it is to implement continuous monitoring of the internal ICS network for proactive risk management.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nicole Wong
Cyber Security Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
11
Jun 2025

Understanding supply chain risk in manufacturing

For industries running Industrial Control Systems (ICS) such as manufacturing and fast-moving consumer goods (FMCG), complex supply chains mean that disruption to one weak node can have serious impacts to the entire ecosystem. However, supply chain risk does not always originate from outside an organization’s ICS network.  

The implicit trust placed on software or shared services for maintenance within an ICS can be considered a type of insider threat [1], where defenders also need to look ‘from within’ to protect against supply chain risk. Attackers have frequently mobilised this form of insider threat:

  • Many ICS and SCADA systems were compromised during the 2014 Havex Watering Hole attack, where via operators’ implicit trust in the trojanized versions of legitimate applications, on legitimate but compromised websites [2].
  • In 2018, the world’s largest manufacturer of semiconductors and processers shut down production for three days after a supplier installed tainted software that spread to over 10,000 machines in the manufacturer’s network [3].
  • During the 2020 SolarWinds supply chain attack, attackers compromised a version of Orion software that was deployed from SolarWinds’ own servers during a software update to thousands of customers, including tech manufacturing companies such as Intel and Nvidia [4].

Traditional approaches to ICS security have focused on defending against everything from outside the castle walls, or outside of the ICS network. As ICS attacks become more sophisticated, defenders must not solely rely on static perimeter defenses and prevention. 

A critical part of active defense is understanding the ICS environment and how it operates, including all possible attack paths to the ICS including network connections, remote access points, the movement of data across zones and conduits and access from mobile devices. For instance, original equipment manufacturers (OEMs) and vendors often install remote access software or third-party equipment in ICS networks to facilitate legitimate maintenance and support activities, which can unintentionally expand the ICS’ attack surface.  

This blog describes an example of the convergence between supply chain risk and insider risk, when a vendor left a Raspberry Pi device in a manufacturing customer’s ICS network without the customer’s knowledge.

Case study: Using unsupervised machine learning to detect pre-existing security issues

Raspberry Pi devices are commonly used in SCADA environments as low-cost, remotely accessible data collectors [5][6][7]. They are often paired with Industrial Internet of Things (IIoT) for monitoring and tracking [8]. However, these devices also represent a security risk because their small physical size and time-consuming nature of physical inspection makes them easy to overlook. This poses a security risk, as these devices have previously been used to carry out USB-based attacks or to emulate Ethernet-over-USB connections to exfiltrate sensitive data [8][9].

In this incident, a Darktrace customer was unaware that their supplier had installed a Raspberry Pi device on their ICS network. Crucially, the installation occurred prior to Darktrace’s deployment on the customer’s network. 

For other anomaly detection tools, this order of events meant that this third-party device would likely have been treated as part of the customer’s existing infrastructure. However, after Darktrace was deployed, it analyzed the metadata from the encrypted HTTPS and DNS connections that the Raspberry Pi made to ‘call home’ to the supplier and determined that these connections were  unusual compared to the rest of the devices in the network, even in the absence of any malicious indicators of compromise (IoCs).  

Darktrace triggered the following alerts for this unusual activity that consequently notified the customer to the pre-existing threat of an unmanaged device already present in their network:

  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Agent Beacon (Short Period)
  • Compromise / Agent Beacon (Medium Period)
  • Compromise / Agent Beacon (Long Period)
  • Tags / New Raspberry Pi Device
  • Device / DNS Requests to Unusual Server
  • Device / Anomaly Indicators / Spike in Connections to Rare Endpoint Indicator
Darktrace’s External Sites Summary showing the rarity of the external endpoint that the Raspberry Pi device ‘called home’ to and the model alerts triggered.  
Figure 1: Darktrace’s External Sites Summary showing the rarity of the external endpoint that the Raspberry Pi device ‘called home’ to and the model alerts triggered.  

Darktrace’s Cyber AI Analyst launched an autonomous investigation into the activity, correlating related events into a broader incident and generating a report outlining the potential threat along with supporting technical details.

Darktrace’s anomaly-based detection meant that the Raspberry Pi device did not need to be observed performing clearly malicious behavior to alert the customer to the security risk, and neither can defenders afford to wait for such escalation.

Why is this significant?

In 2021 a similar attack took place. Aiming to poison a Florida water treatment facility, attackers leveraged a TeamViewer instance that had been dormant on the system for six months, effectively allowing the attacker to ‘live off the land’ [10].  

The Raspberry Pi device in this incident also remained outside the purview of the customer’s security team at first. It could have been leveraged by a persistent attacker to pivot within the internal network and communicate externally.

A proactive approach to active defense that seeks to minimize and continuously monitor the attack surface and network is crucial.  

The growing interest in manufacturing from attackers and policymakers

Significant motivations for targeting the manufacturing sector and increasing regulatory demands make the convergence of supply chain risk, insider risk, and the prevalence of stealthy living-off-the-land techniques particularly relevant to this sector.

Manufacturing is consistently targeted by cybercriminals [11], and the sector’s ‘just-in-time’ model grants attackers the opportunity for high levels of disruption. Furthermore, under NIS 2, manufacturing and some food and beverage processing entities are now designated as ‘important’ entities. This means stricter incident reporting requirements within 24 hours of detection, and enhanced security requirements such as the implementation of zero trust and network segmentation policies, as well as measures to improve supply chain resilience [12][13][14].

How can Darktrace help?

Ultimately, Darktrace successfully assisted a manufacturing organization in detecting a potentially disruptive 'near-miss' within their OT environment, even in the absence of traditional IoCs.  Through passive asset identification techniques and continuous network monitoring, the customer improved their understanding of their network and supply chain risk.  

While the swift detection of the rogue device allowed the threat to be identified before it could escalate, the customer could have reduced their time to respond by using Darktrace’s built-in response capabilities, had Darktrace’s Autonomous Response capability been enabled.  Darktrace’s Autonomous Response can be configured to target specific connections on a rogue device either automatically upon detection or following manual approval from the security team, to stop it communicating with other devices in the network while allowing other approved devices to continue operating. Furthermore, the exportable report generated by Cyber AI Analyst helps security teams to meet NIS 2’s enhanced reporting requirements.  

Sophisticated ICS attacks often leverage insider access to perform in-depth reconnaissance for the development of tailored malware capabilities.  This case study and high-profile ICS attacks highlight the importance of mitigating supply chain risk in a similar way to insider risk.  As ICS networks adapt to the introduction of IIoT, remote working and the increased convergence between IT and OT, it is important to ensure the approach to secure against these threats is compatible with the dynamic nature of the network.  

Credit to Nicole Wong (Principal Cyber Analyst), Matthew Redrup (Senior Analyst and ANZ Team Lead)

[related-resource]

Appendices

MITRE ATT&CK Mapping

  • Infrastructure / New Raspberry Pi Device - INITIAL ACCESS - T1200 Hardware Additions
  • Device / DNS Requests to Unusual Server - CREDENTIAL ACCESS, COLLECTION - T1557 Man-in-the-Middle
  • Compromise / Agent Beacon - COMMAND AND CONTROL - T1071.001 Web Protocols

References

[1] https://www.cisa.gov/topics/physical-security/insider-threat-mitigation/defining-insider-threats

[2] https://www.trendmicro.com/vinfo/gb/threat-encyclopedia/web-attack/139/havex-targets-industrial-control-systems

[3]https://thehackernews.com/2018/08/tsmc-wannacry-ransomware-attack.html

[4] https://www.theverge.com/2020/12/21/22194183/intel-nvidia-cisco-government-infected-solarwinds-hack

[5] https://www.centreon.com/monitoring-ot-with-raspberry-pi-and-centreon/

[6] https://ieeexplore.ieee.org/document/9107689

[7] https://www.linkedin.com/pulse/webicc-scada-integration-industrial-raspberry-pi-devices-mryff

[8] https://www.rowse.co.uk/blog/post/how-is-the-raspberry-pi-used-in-the-iiot

[9] https://sepiocyber.com/resources/whitepapers/raspberry-pi-a-friend-or-foe/#:~:text=Initially%20designed%20for%20ethical%20purposes,as%20cyberattacks%20and%20unauthorized%20access

[10] https://edition.cnn.com/2021/02/10/us/florida-water-poison-cyber/index.html

[11] https://www.mxdusa.org/2025/02/13/top-cyber-threats-in-manufacturing/

[12] https://www.shoosmiths.com/insights/articles/nis2-what-manufacturers-and-distributors-need-to-know-about-europes-new-cybersecurity-regime

[13] https://www.goodaccess.com/blog/nis2-require-zero-trust-essential-security-measure#zero-trust-nis2-compliance

[14] https://logisticsviewpoints.com/2024/11/06/the-impact-of-nis-2-regulations-on-manufacturing-supply-chains/

Darktrace & Manufacturing

Cyber-attacks are evolving, and manufacturing organizations remain vulnerable to disruptions, learn how Darktrace can help.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nicole Wong
Cyber Security Analyst

More in this series

No items found.

Blog

/

Identity

/

July 7, 2025

Top Eight Threats to SaaS Security and How to Combat Them

Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

/

July 7, 2025

Pre-CVE Threat Detection: 10 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability

Default blog imageDefault blog image

Vulnerabilities are weaknesses in a system that can be exploited by malicious actors to gain unauthorized access or to disrupt normal operations. Common Vulnerabilities and Exposures (or CVEs) are a list of publicly disclosed cybersecurity vulnerabilities that can be tracked and mitigated by the security community.

When a vulnerability is discovered, the standard practice is to report it to the vendor or the responsible organization, allowing them to develop and distribute a patch or fix before the details are made public. This is known as responsible disclosure.

With a record-breaking 40,000 CVEs reported for 2024 and a predicted higher number for 2025 by the Forum for Incident Response and Security Teams (FIRST) [1], anomaly-detection is essential for identifying these potential risks. The gap between exploitation of a zero-day and disclosure of the vulnerability can sometimes be considerable, and retroactively attempting to identify successful exploitation on your network can be challenging, particularly if taking a signature-based approach.

Detecting threats without relying on CVE disclosure

Abnormal behaviors in networks or systems, such as unusual login patterns or data transfers, can indicate attempted cyber-attacks, insider threats, or compromised systems. Since Darktrace does not rely on rules or signatures, it can detect malicious activity that is anomalous even without full context of the specific device or asset in question.

For example, during the Fortinet exploitation late last year, the Darktrace Threat Research team were investigating a different Fortinet vulnerability, namely CVE 2024-23113, for exploitation when Mandiant released a security advisory around CVE 2024-47575, which aligned closely with Darktrace’s findings.

Retrospective analysis like this is used by Darktrace’s threat researchers to better understand detections across the threat landscape and to add additional context.

Below are ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

Trends in pre-cve exploitation

Often, the disclosure of an exploited vulnerability can be off the back of an incident response investigation related to a compromise by an advanced threat actor using a zero-day. Once the vulnerability is registered and publicly disclosed as having been exploited, it can kick off a race between the attacker and defender: attack vs patch.

Nation-state actors, highly skilled with significant resources, are known to use a range of capabilities to achieve their target, including zero-day use. Often, pre-CVE activity is “low and slow”, last for months with high operational security. After CVE disclosure, the barriers to entry lower, allowing less skilled and less resourced attackers, like some ransomware gangs, to exploit the vulnerability and cause harm. This is why two distinct types of activity are often seen: pre and post disclosure of an exploited vulnerability.

Darktrace saw this consistent story line play out during several of the Fortinet and PAN OS threat actor campaigns highlighted above last year, where nation-state actors were seen exploiting vulnerabilities first, followed by ransomware gangs impacting organizations [2].

The same applies with the recent SAP Netweaver exploitations being tied to a China based threat actor earlier this spring with subsequent ransomware incidents being observed [3].

Autonomous Response

Anomaly-based detection offers the benefit of identifying malicious activity even before a CVE is disclosed; however, security teams still need to quickly contain and isolate the activity.

For example, during the Ivanti chaining exploitation in the early part of 2025, a customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device.

This pre-CVE detection and response by Darktrace occurred 11 days before any public disclosure, demonstrating the value of an anomaly-based approach.

In some cases, customers have even reported that Darktrace stopped malicious exploitation of devices several days before a public disclosure of a vulnerability.

For example, During the ConnectWise exploitation, a customer informed the team that Darktrace had detected malicious software being installed via remote access. Upon further investigation, four servers were found to be impacted, while Autonomous Response had blocked outbound connections and enforced patterns of life on impacted devices.

Conclusion

By continuously analyzing behavioral patterns, systems can spot unusual activities and patterns from users, systems, and networks to detect anomalies that could signify a security breach.

Through ongoing monitoring and learning from these behaviors, anomaly-based security systems can detect threats that traditional signature-based solutions might miss, while also providing detailed insights into threat tactics, techniques, and procedures (TTPs). This type of behavioral intelligence supports pre-CVE detection, allows for a more adaptive security posture, and enables systems to evolve with the ever-changing threat landscape.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO), Emma Foulger (Global Threat Research Operations Lead), Ryan Traill (Analyst Content Lead)

References and further reading:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

Related Darktrace blogs:

*Self-reported by customer, confirmed afterwards.

**Updated January 2024 blog now reflects current findings

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI