Blog
/
Network
/
June 3, 2024

The Price of Admission: Countering Stolen Credentials with Darktrace

This blog examines a network compromise that stemmed from the purchase of leaked credentials from the dark web. Credentials purchased from dark web marketplaces allow unauthorized access to internal systems. Such access can be used to exfiltrate data, disrupt operations, or deploy malware.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Charlotte Thompson
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
03
Jun 2024

Using leaked credentials to gain unauthorized access

Dark web marketplaces selling sensitive data have increased accessibility for malicious actors, similar to Ransomware-as-a-Service (RaaS), lowering the barrier to entry usually associated with malicious activity. By utilizing leaked credentials, malicious actors can easily gain unauthorized access to accounts and systems which they can leverage to carry out malicious activities like data exfiltration or malware deployment.

Usage of leaked credentials by malicious actors is a persistent concern for both organizations and security providers. Google Cloud’s ‘H1 2024 Threat Horizons Report’ details that initial access seen in 2.9% of cloud compromises observed on Google Cloud resulted from leaked credential usage [1], with the ‘IBM X-Force Threat Intelligence Index 2024’ reporting 71% year-on-year increase in cyber-attacks which utilize stolen or compromised credentials [2].

Darktrace coverage of leaked credentials

In early 2024, one Darktrace customer was compromised by a malicious actor after their internal credentials had been leaked on the dark web. Subsequent attack phases were detected by Darktrace/Network and the customer was alerted to the suspicious activity via the Proactive Threat Notification (PTN) service, following an investigation by Darktrace’s Security Operation Center (SOC).

Darktrace detected a device on the network of a customer in the US carrying out a string of anomalous activity indicative of network compromise. The device was observed using a new service account to authenticate to a Virtual Private Network (VPN) server, before proceeding to perform a range of suspicious activity including internal reconnaissance and lateral movement.

Malicious actors seemingly gained access to a previously unused service account for which they were able to set up multi-factor authentication (MFA) to access the VPN. As this MFA setup was made possible by the configuration of the customer’s managed service provider (MSP), the initial access phase of the attack fell outside of Darktrace’s purview.

Unfortunately for the customer in this case, Darktrace RESPOND™ was not enabled on the network at the time of the attack. Had RESPOND been active, it would have been able to autonomously act against the malicious activity by disabling users, strategically blocking suspicious connections and limiting devices to their expected patterns of activity.

Attack timeline of leaked credentials spotted by darktrace

Network Scanning Activity

On February 22, 2024, Darktrace detected the affected device performing activity indicative of network scanning, namely initiating connections on multiple ports, including ports 80, 161 389 and 445, to other internal devices. While many of these internal connection attempts were unsuccessful, some successful connections were observed.

Devices on a network can gather information about other internal devices by performing network scanning activity. Defensive scanning can be used to support network security, allowing internal security teams to discover vulnerabilities and potential entry points that require their attention, however attackers are also able to take advantage of such information, such as open ports and services available on internal devices, with offensive scanning.

Brute Force Login Attempts

Darktrace proceeded to identify the malicious actor attempting to access a previously unused service account for which they were able to successfully establish MFA to access the organization’s VPN. As the customer’s third-party MSP had been configured to allow all users to login to the organization’s VPN using MFA, this login was successful. Moreover, the service account had never previously been used and MFA and never been established, allowing the attacker to leverage it for their own nefarious means.

Darktrace/Network identified the attacker attempting to authenticate over the Kerberos protocol using a total of 30 different usernames, of which two were observed successfully authenticating. There was a total of 6 successful Kerberos logins identified from two different credentials.  Darktrace also observed over 100 successful NTLM attempts from the same device for multiple usernames including “Administrator” and “mail”. These credentials were later confirmed by the customer to have been stolen and leaked on the dark web.

Advanced Search query results showing the usernames that successfully authenticated via NTLM.
Figure 1: Advanced Search query results showing the usernames that successfully authenticated via NTLM.

Even though MFA requirements had been satisfied when the threat actor accessed the organization’s VPN, Darktrace recognized that this activity represented a deviation from its previously learned behavior.

Malicious actors frequently attempt to gain unauthorized access to accounts and internal systems by performing login attempts using multiple possible usernames and passwords. This type of brute-force activity is typically accomplished using computational power via the use of software or scripts to attempt different username/password combinations until one is successful.

By purchasing stolen credentials from dark web marketplaces, attackers are able to significantly increase the success rate of brute-force attacks and, if they do gain access, they can easily act on their objectives, be that exfiltrating sensitive data or moving through their target networks to further the compromise.

Share Enumeration

Around 30 minutes after the initial network scanning activity, the compromised device was observed performing SMB enumeration using one of the aforementioned accounts. Darktrace understood that this activity was suspicious as the device had never previously been used to perform SMB activity and had not been tagged as a security device.

Darktrace/Network identifying the suspicious SMB enumeration performed by the compromised device.
Figure 2: Darktrace/Network identifying the suspicious SMB enumeration performed by the compromised device.

Such enumeration can be used by malicious actors to gain insights into the structures and configurations of a target device, view permissions associated with shared resources, and also view general identifying information about the system.

Darktrace further identified that the device connected to the named pipe “srvsvc”. By enumerating over srvsvc, a threat actor is able to request a list of all available SMB shares on a destination device, enabling further data gathering as part of network reconnaissance. Srvsvc also provides access to remote procedure call (RPC) for various services on a destination device.

At this stage, a Darktrace/Network Enhanced Monitoring model was triggered for lateral movement activity taking place on the customer’s network. As this particular customer was subscribed to the PTN service, the Enhanced Monitoring model alert was promptly triaged and investigated by the Darktrace SOC. The customer was alerted to the emerging activity and given full details of the incident and the SOC team’s investigation.

Attack and Reconnaissance Tool Usage

A few minutes later, Darktrace observed the device making a connection with a user agent associated with the Nmap network scanning tool, “Mozilla/5.0 (compatible; Nmap Scripting Engine; https://nmap.org/book/nse[.]html)”. While these tools are often used legitimately by an organization’s security team, they can also be used maliciously by attackers to exploit vulnerabilities that attackers may have unearthed during earlier reconnaissance activity.

As such services are often seen as normal network traffic, attackers can often use them to bypass traditional security measures. Darktrace’s Self-Learning AI, however, was able to recognize that the affected device was not a security device and therefore not expected to carry out such activity, even if it was using a legitimate Nmap service.

Darktrace/Network identifying the compromised device using the Nmap scanning tool.
Figure 3: Darktrace/Network identifying the compromised device using the Nmap scanning tool.

Further Lateral Movement

Following this suspicious Nmap usage, Darktrace observed a range of additional anomalous SMB activity from the aforementioned compromised account. The affected device attempted to establish almost 900 SMB sessions, as well as performing 65 unusual file reads from 29 different internal devices and over 300 file deletes for the file “delete.me” from over 100 devices using multiple paths, including ADMIN$, C$, print$.

Darktrace also observed the device making several DCE-RPC connections associated with Active Directory Domain enumeration, including DRSCrackNames and DRSGetNCChanges; a total of more than 1000 successful DCE-RPC connection were observed to a domain controller.

As this customer did not have Darktrace/Network's autonomous response deployed on their network, the above detailed lateral movement and network reconnaissance activity was allowed to progress unfettered, until Darktrace’s SOC alerted the customer’s security team to take urgent action. The customer also received follow-up support through Darktrace’s Ask the Expert (ATE) service, allowing them to contact the analyst team directly for further details and support on the incident.

Thanks to this early detection, the customer was able to quickly identify and disable affected user accounts, effectively halting the attack and preventing further escalation.

Conclusions

Given the increasing trend of ransomware attackers exfiltrating sensitive data for double extortion and the rise of information stealers, stolen credentials are commonplace across dark web marketplaces. Malicious actors can exploit these leaked credentials to drastically lower the barrier to entry associated with brute-forcing access to their target networks.

While implementing well-configured MFA and enforcing regular password changes can help protect organizations, these measures alone may not be enough to fully negate the advantage attackers gain with stolen credentials.

In this instance, an attacker used leaked credentials to compromise an unused service account, allowing them to establish MFA and access the customer’s VPN. While this tactic may have allowed the attacker to evade human security teams and traditional security tools, Darktrace’s AI detected the unusual use of the account, indicating a potential compromise despite the organization’s MFA requirements being met. This underscores the importance of adopting an intelligent decision maker, like Darktrace, that is able to identify and respond to anomalies beyond standard protective measures.

Credit to Charlotte Thompson, Cyber Security Analyst, Ryan Traill, Threat Content Lead

Appendices

Darktrace DETECT Model Coverage

-       Device / Suspicious SMB Scanning Activity (Model Alert)

-       Device / ICMP Address Scan (Model Alert)

-       Device / Network Scan (Model Alert)

-       Device / Suspicious LDAP Search Operation (Model Alert)

-       User / Kerberos Username Brute Force (Model Alert)

-       Device / Large Number of Model Breaches (Model Alert)

-       Anomalous Connection / SMB Enumeration (Model Alert)

-       Device / Multiple Lateral Movement Model Breaches (Enhanced Monitoring Model Alert)

-       Device / Possible SMB/NTLM Reconnaissance (Model Alert)

-       Anomalous Connection / Possible Share Enumeration Activity (Model Alert)

-       Device / Attack and Recon Tools (Model Alert)

MITRE ATT&CK Mapping

Tactic – Technique - Code

INITIAL ACCESS - Hardware Additions     -T1200

DISCOVERY - Network Service Scanning -T1046

DISCOVERY - Remote System Discovery - T1018

DISCOVERY - Domain Trust Discovery      - T1482

DISCOVERY - File and Directory Discovery - T1083

DISCOVERY - Network Share Discovery - T1135

RECONNAISSANCE - Scanning IP Blocks - T1595.001

RECONNAISSANCE - Vulnerability Scanning - T1595.002

RECONNAISSANCE - Client Configurations - T1592.004

RECONNAISSANCE - IP Addresses - T1590.005

CREDENTIAL ACCESS - Brute Force - T1110

LATERAL MOVEMENT - Exploitation of Remote Services -T1210

References

  1. 2024 Google Cloud Threat Horizons Report
    https://services.google.com/fh/files/misc/threat_horizons_report_h12024.pdf
  2. IBM X-Force Threat Intelligence Index 2024
    https://www.ibm.com/reports/threat-intelligence
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Charlotte Thompson
Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

July 24, 2025

Untangling the web: Darktrace’s investigation of Scattered Spider’s evolving tactics

Default blog imageDefault blog image

What is Scattered Spider?

Scattered Spider is a native English-speaking group, also referred to, or closely associated with, aliases such as UNC3944, Octo Tempest and Storm-0875. They are primarily financially motivated with a clear emphasis on leveraging social engineering, SIM swapping attacks, exploiting legitimate tooling as well as using Living-Off-the-Land (LOTL) techniques [1][2].

In recent years, Scattered Spider has been observed employing a shift in tactics, leveraging Ransomware-as-a-Service (RaaS) platforms in their attacks. This adoption reflects a shift toward more scalable attacks with a lower barrier to entry, allowing the group to carry out sophisticated ransomware attacks without the need to develop it themselves.

While RaaS offerings have been available for purchase on the Dark Web for several years, they have continued to grow in popularity, providing threat actors a way to cause significant impact to critical infrastructure and organizations without requiring highly technical capabilities [12].

This blog focuses on the group’s recent changes in tactics, techniques, and procedures (TTPs) reported by open-source intelligence (OSINT) and how TTPs in a recent Scattered Spider attack observed by Darktrace compare.

How has Scattered Spider been reported to operate?

First observed in 2022, Scattered Spider is known to target various industries globally including telecommunications, technology, financial services, and commercial facilities.

Overview of key TTPs

Scattered Spider has been known to utilize the following methods which cover multiple stages of the Cyber Kill Chain including initial access, lateral movement, evasion, persistence, and action on objective:

Social engineering [1]:

Impersonating staff via phone calls, SMS and Telegram messages; obtaining employee credentials (MITRE techniques T1598,T1656), multi-factor authentication (MFA) codes such as one-time passwords, or convincing employees to run commercial remote access tools enabling initial access (MITRE techniques T1204,T1219,T1566)

  • Phishing using specially crafted domains containing the victim name e.g. victimname-sso[.]com
  • MFA fatigue: sending repeated requests for MFA approval with the intention that the victim will eventually accept (MITRE technique T1621)

SIM swapping [1][3]:

  • Includes hijacking phone numbers to intercept 2FA codes
  • This involves the actor migrating the victim's mobile number to a new SIM card without legitimate authorization

Reconnaissance, lateral movement & command-and-control (C2) communication via use of legitimate tools:

  • Examples include Mimikatz, Ngrok, TeamViewer, and Pulseway [1]. A more recently reported example is Teleport [3].

Financial theft through their access to victim networks: Extortion via ransomware, data theft (MITRE technique T1657) [1]

Bring Your Own Vulnerable Driver (BYOVD) techniques [4]:

  • Exploiting vulnerable drivers to evade detection from Endpoint Detection and Response (EDR) security products (MITRE technique T1068) frequently used against Windows devices.

LOTL techniques

LOTL techniques are also closely associated with Scattered Spider actors once they have gained initial access; historically this has allowed them to evade detection until impact starts to be felt. It also means that specific TTPs may vary from case-to-case, making it harder for security teams to prepare and harden defences against the group.

Prominent Scattered Spider attacks over the years

While attribution is sometimes unconfirmed, Scattered Spider have been linked with a number of highly publicized attacks since 2022.

Smishing attacks on Twilio: In August 2022 the group conducted multiple social engineering-based attacks. One example was an SMS phishing (smishing) attack against the cloud communication platform Twilio, which led to the compromise of employee accounts, allowing actors to access internal systems and ultimately target Twilio customers [5][6].

Phishing and social engineering against MailChimp: Another case involved a phishing and social engineering attack against MailChimp. After gaining access to internal systems through compromised employee accounts the group conducted further attacks specifically targeting MailChimp users within cryptocurrency and finance industries [5][7].

Social engineering against Riot Games: In January 2023, the group was linked with an attack on video game developer Riot Games where social engineering was once again used to access internal systems. This time, the attackers exfiltrated game source code before sending a ransom note [8][9].

Attack on Caesars & MGM: In September 2023, Scattered Spider was linked with attacked on Caesars Entertainment and MGM Resorts International, two of the largest casino and gambling companies in the United States. It was reported that the group gathered nearly six terabytes of stolen data from the hotels and casinos, including sensitive information of guests, and made use of the RaaS strain BlackCat [10].

Ransomware against Marks & Spencer: More recently, in April 2025, the group has also been linked to the alleged ransomware incident against the UK-based retailer Marks & Spencer (M&S) making use of the DragonForce RaaS [11].

How a recent attack observed by Darktrace compares

In May 2025, Darktrace observed a Scattered Spider attack affecting one of its customers. While initial access in this attack fell outside of Darktrace’s visibility, information from the affected customer suggests similar social engineering techniques involving abuse of the customer’s helpdesk and voice phishing (vishing) were used for reconnaissance.

Initial access

It is believed the threat actor took advantage of the customer’s third-party Software-as-a-Service (SaaS) applications, such as Salesforce during the attack.

Such applications are a prime target for data exfiltration due to the sensitive data they hold; customer, personnel, and business data can all prove useful in enabling further access into target networks.

Techniques used by Scattered Spider following initial access to a victim network tend to vary more widely and so details are sparser within OSINT. However, Darktrace is able to provide some additional insight into what techniques were used in this specific case, based on observed activity and subsequent investigation by its Threat Research team.

Lateral movement

Following initial access to the customer’s network, the threat actor was able to pivot into the customer’s Virtual Desktop Infrastructure (VDI) environment.

Darktrace observed the threat actor spinning up new virtual machines and activating cloud inventory management tools to enable discovery of targets for lateral movement.

In some cases, these virtual machines were not monitored or managed by the customer’s security tools, allowing the threat actor to make use of additional tooling such as AnyDesk which may otherwise have been blocked.

Tooling in further stages of the attack sometimes overlapped with previous OSINT reporting on Scattered Spider, with anomalous use of Ngrok and Teleport observed by Darktrace, likely representing C2 communication. Additional tooling was also seen being used on the virtual machines, such as Pastebin.

 Cyber AI Analyst’s detection of C2 beaconing to a teleport endpoint with hostname CUSTOMERNAME.teleport[.]sh, likely in an attempt to conceal the traffic.
Figure 1: Cyber AI Analyst’s detection of C2 beaconing to a teleport endpoint with hostname CUSTOMERNAME.teleport[.]sh, likely in an attempt to conceal the traffic.

Leveraging LOTL techniques

Alongside use of third-party tools that may have been unexpected on the network, various LOTL techniques were observed during the incident; this primarily involved the abuse of standard network protocols such as:

  • SAMR requests to alter Active Directory account details
  • Lateral movement over RDP and SSH
  • Data collection over LDAP and SSH

Coordinated exfiltration activity linked through AI-driven analysis

Multiple methods of exfiltration were observed following internal data collection. This included SSH transfers to IPs associated with Vultr, alongside significant uploads to an Amazon S3 bucket.

While connections to this endpoint were not deemed unusual for the network at this stage due to the volume of traffic seen, Darktrace’s Cyber AI Analyst was still able to identify the suspiciousness of this behavior and launched an investigation into the activity.

Cyber AI Analyst successfully correlated seemingly unrelated internal download and external upload activity across multiple devices into a single, broader incident for the customer’s security team to review.

Cyber AI Analyst Incident summary showing a clear outline of the observed activity, including affected devices and the anomalous behaviors detected.
Figure 2: Cyber AI Analyst Incident summary showing a clear outline of the observed activity, including affected devices and the anomalous behaviors detected.
Figure 3: Cyber AI Analyst’s detection of internal data downloads and subsequent external uploads to an Amazon S3 bucket.

Exfiltration and response

Unfortunately, as Darktrace was not configured in Autonomous Response mode at the time, the attack was able to proceed without interruption, ultimately escalating to the point of data exfiltration.

Despite this, Darktrace was still able to recommend several Autonomous Response actions, aimed at containing the attack by blocking the internal data-gathering activity and the subsequent data exfiltration connections.

These actions required manual approval by the customer’s security team and as shown in Figure 3, at least one of the recommended actions was subsequently approved.

Had Darktrace been enabled in Autonomous Response mode, these measures would have been applied immediately, effectively halting the data exfiltration attempts.

Further recommendations for Autonomous Response actions in Darktrace‘s Incident Interface, with surgical response targeting both the internal data collection and subsequent exfiltration.
Figure 4: Further recommendations for Autonomous Response actions in Darktrace‘s Incident Interface, with surgical response targeting both the internal data collection and subsequent exfiltration.

Scattered Spider’s use of RaaS

In this recent Scattered Spider incident observed by Darktrace, exfiltration appears to have been the primary impact. While no signs of ransomware deployment were observed here, it is possible that this was the threat actors’ original intent, consistent with other recent Scattered Spider attacks involving RaaS platforms like DragonForce.

DragonForce emerged towards the end of 2023, operating by offering their platform and capabilities on a wide scale. They also launched a program which offered their affiliates 80% of the eventual ransom, along with tools for further automation and attack management [13].

The rise of RaaS and attacker customization is fragmenting TTPs and indicators, making it harder for security teams to anticipate and defend against each unique intrusion.

While DragonForce appears to be the latest RaaS used by Scattered Spider, it is not the first, showcasing the ongoing evolution of tactics used the group.

In addition, the BlackCat RaaS strain was reportedly used by Scattered Spider for their attacks against Caesars Entertainment and MGM Resorts International [10].

In 2024 the group was also seen making use of additional RaaS strains; RansomHub and Qilin [15].

What security teams and CISOs can do to defend against Scattered Spider

The ongoing changes in tactics used by Scattered Spider, reliance on LOTL techniques, and continued adoption of evolving RaaS providers like DragonForce make it harder for organizations and their security teams to prepare their defenses against such attacks.

CISOs and security teams should implement best practices such as MFA, Single Sign-On (SSO), notifications for suspicious logins, forward logging, ethical phishing tests.

Also, given Scattered Spider’s heavy focus on social engineering, and at times using their native English fluency to their advantage, it is critical to IT and help desk teams are reminded they are possible targets.

Beyond social engineering, the threat actor is also adept at taking advantage of third-party SaaS applications in use by victims to harvest common SaaS data, such as PII and configuration data, that enable the threat actor to take on multiple identities across different domains.

With Darktrace’s Self-Learning AI, anomaly-based detection, and Autonomous Response inhibitors, businesses can halt malicious activities in real-time, whether attackers are using known TTPs or entirely new ones. Offerings such as Darktrace /Attack Surface Management enable security teams to proactively identify signs of malicious activity before it can cause an impact, while more generally Darktrace’s ActiveAI Security Platform can provide a comprehensive view of an organization’s digital estate across multiple domains.

Credit to Justin Torres (Senior Cyber Analyst), Emma Foulger (Global Threat Research Operations Lead), Zaki Al-Dhamari (Cyber Analyst), Nathaniel Jones (VP, Security & AI Strategy, FCISO), and Ryan Traill (Analyst Content Lead)

---------------------

The information provided in this blog post is for general informational purposes only and is provided "as is" without any representations or warranties, express or implied. While Darktrace makes reasonable efforts to ensure the accuracy and timeliness of the content related to cybersecurity threats such as Scattered Spider, we make no warranties or guarantees regarding the completeness, reliability, or suitability of the information for any purpose.

This blog post does not constitute professional cybersecurity advice, and should not be relied upon as such. Readers should seek guidance from qualified cybersecurity professionals or legal counsel before making any decisions or taking any actions based on the content herein.

No warranty of any kind, whether express or implied, including, but not limited to, warranties of performance, merchantability, fitness for a particular purpose, or non-infringement, is given with respect to the contents of this post.

Darktrace expressly disclaims any liability for any loss or damage arising from reliance on the information contained in this blog.

Appendices

References

[1] https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-320a

[2] https://attack.mitre.org/groups/G1015/

[3] https://www.rapid7.com/blog/post/scattered-spider-rapid7-insights-observations-and-recommendations/

[4] https://www.crowdstrike.com/en-us/blog/scattered-spider-attempts-to-avoid-detection-with-bring-your-own-vulnerable-driver-tactic/

[5] https://krebsonsecurity.com/2024/06/alleged-boss-of-scattered-spider-hacking-group-arrested/?web_view=true

[6] https://www.cxtoday.com/crm/uk-teenager-accused-of-hacking-twilio-lastpass-mailchimp-arrested/

[7] https://mailchimp.com/newsroom/august-2022-security-incident/

[8] https://techcrunch.com/2023/02/02/0ktapus-hackers-are-back-and-targeting-tech-and-gaming-companies-says-leaked-report/

[9] https://www.pcmag.com/news/hackers-behind-riot-games-breach-stole-league-of-legends-source-code

[10] https://www.bbrown.com/us/insight/a-look-back-at-the-mgm-and-caesars-incident/

[11] https://cyberresilience.com/threatonomics/scattered-spider-uk-retail-attacks/

[12] https://www.crowdstrike.com/en-us/cybersecurity-101/ransomware/ransomware-as-a-service-raas/

[13] https://www.group-ib.com/blog/dragonforce-ransomware/
[14] https://blackpointcyber.com/wp-content/uploads/2024/11/DragonForce.pdf
[15] https://x.com/MsftSecIntel/status/1812932749314978191?lang=en

Select MITRE tactics associated with Scattered Spider

Tactic – Technique – Technique Name

Reconnaissance - T1598 -   Phishing for Information

Initial Access - T1566 – Phishing

Execution - T1204 - User Execution

Privilege Escalation - T1068 - Exploitation for Privilege Escalation

Defense Evasion - T1656 - Impersonation

Credential Access - T1621 - Multi-Factor Authentication Request Generation

Lateral Movement - T1021 - Remote Services

Command and Control - T1102 - Web Service

Command and Control - T1219 - Remote Access Tools

Command and Control - T1572 - Protocol Tunneling

Exfiltration - T1567 - Exfiltration Over Web Service

Impact - T1657 - Financial Theft

Select MITRE tactics associated with DragonForce

Tactic – Technique – Technique Name

Initial Access, Defense Evasion, Persistence, Privilege Escalation - T1078 - Valid Accounts

Initial Access, Persistence - T1133 - External Remote Services

Initial Access - T1190 - Exploit Public-Facing Application

Initial Access - T1566 – Phishing

Execution - T1047 - Windows Management Instrumentation

Privilege Escalation - T1068 - Exploitation for Privilege Escalation

Lateral Movement - T1021 - Remote Services

Impact - T1486 - Data Encrypted for Impact

Impact - T1657 - Financial Theft

Select Darktrace models

Compliance / Internet Facing RDP Server

Compliance / Incoming Remote Access Tool

Compliance / Remote Management Tool on Server

Anomalous File / Internet Facing System File Download

Anomalous Server Activity/ New User Agent from Internet Facing System

Anomalous Connection / Callback on Web Facing Device

Device / Internet Facing System with High Priority Alert

Anomalous Connection / Unusual Admin RDP

Anomalous Connection / High Priority DRSGetNCChanges

Anomalous Connection / Unusual Internal SSH

Anomalous Connection / Active Remote Desktop Tunnel

Compliance / Pastebin

Anomalous Connection / Possible Tunnelling to Rare Endpoint

Compromise / Beaconing Activity to External Rare

Device / Long Agent Connection to New Endpoint

Compromise / SSH to Rare External AWS

Compliance / SSH to Rare External Destination

Anomalous Server Activity / Outgoing from Server

Anomalous Connection / Large Volume of LDAP Download

Unusual Activity / Internal Data Transfer on New Device

Anomalous Connection / Download and Upload

Unusual Activity / Enhanced Unusual External Data Transfer

Compromise / Ransomware/Suspicious SMB Activity

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead

Blog

/

/

July 24, 2025

Closing the Cloud Forensics and Incident Response Skills Gap

Default blog imageDefault blog image

Every alert that goes uninvestigated is a calculated risk — and teams are running out of room for error

Security operations today are stretched thin. SOCs face an overwhelming volume of alerts, and the shift to cloud has only made triage more complex.

Our research suggests that 23% of cloud alerts are never investigated, leaving risk on the table.

The rapid migration to cloud resources has security teams playing catch up. While they attempt to apply traditional on-prem tools to the cloud, it’s becoming increasingly clear that they are not fit for purpose. Especially in the context of forensics and incident response, the cloud presents unique complexities that demand cloud-specific solutions.

Organizations are increasingly adopting services from multiple cloud platforms (in fact, recent studies suggest 89% of organizations now operate multi-cloud environments), and container-based and serverless setups have become the norm. Security analysts already have enough on their plates; it’s unrealistic to expect them to be cloud experts too.

Why Digital Forensics and Incident Response (DFIR) roles are so hard to fill

Compounding these issues of alert fatigue and cloud complexity, there is a lack of DFIR talent. The cybersecurity skills gap is a well-known problem.

According to the 2024 ISC2 Cybersecurity Workforce Study, there is a global shortage of 4.8 million cybersecurity workers, up 19% from the previous year.

Why is this such an issue?

  • Highly specialized skill set: DFIR professionals need to have a deep understanding of various operating systems, network protocols, and security architectures, even more so when working in the cloud. They also need to be proficient in using a wide range of forensic tools and techniques. This level of expertise takes a lot of time and effort to develop.
  • Rapid technological changes: The cloud landscape is constantly changing and evolving with new services, monitoring tools, security mechanisms, and threats emerging regularly. Keeping up with these changes and staying current requires continuous learning and adaptation.
  • Lack of formal education and training: There are limited educational programs specifically dedicated for DFIR. Further, an industry for cloud DFIR has yet to be defined. While some universities and institutions offer courses or certifications in digital forensics, they may not cover the full spread of knowledge required in real-world incident response scenarios, especially for cloud-based environments.
  • High-stress nature of the job: DFIR professionals often work under tight deadlines in high-pressure situations, especially when handling security incidents. This can lead to burnout and high turnover rates in the profession.

Bridging the skills gap with usable cloud digital forensics and incident response tools  

To help organizations close the DFIR skills gap, it's critical that we modernize our approaches and implement a new way of doing things in DFIR that's fit for the cloud era. Modern cloud forensics and incident response platforms must prioritize usability in order to up-level security teams. A platform that is easy to use has the power to:

  • Enable more advanced analysts to be more efficient and have the ability to take on more cases
  • Uplevel more novel analysts to perform more advanced tasks than ever before
  • Eliminate cloud complexity– such as the complexities introduced by multi-cloud environments and container-based and serverless setups

What to look for in cloud forensics and incident response solutions

The following features greatly improve the impact of cloud forensics and incident response:

Data enrichment: Automated correlation of collected data with threat intelligence feeds, both external and proprietary, delivers immediate insight into suspicious or malicious activities. Data enrichment expedites investigations, enabling analysts to seamlessly pivot from key events and delve deeper into the raw data.

Single timeline view: A unified perspective across various cloud platforms and data sources is crucial. A single timeline view empowers security teams to seamlessly navigate evidence based on timestamps, events, users, and more, enhancing investigative efficiency. Pulling together a timeline has historically been a very time consuming task when using traditional approaches.

Saved search: Preserving queries during investigations allows analysts to re-execute complex searches or share them with colleagues, increasing efficiency and collaboration.

Faceted search: Facet search options provide analysts with quick insights into core data attributes, facilitating efficient dataset refinement.

Cross-cloud investigations: Analyzing evidence acquired from multiple cloud providers in a single platform is crucial for security teams. A unified view and timeline across cross cloud is critical in streamlining investigations.

How Darktrace can help

Darktrace’s cloud offerings have been bolstered with the acquisition of Cado Security Ltd., which enables security teams to gain immediate access to forensic-level data in multi-cloud, container, serverless, SaaS, and on-premises environments.

Not only does Darktrace offer centralized automation solutions for cloud forensics and investigation, but it also delivers a proactive approach Cloud Detection and Response (CDR). Darktrace / CLOUD is built with advanced AI to make cloud security accessible to all security teams and SOCs. By using multiple machine learning techniques, Darktrace brings unprecedented visibility, threat detection, investigation, and incident response to hybrid and multi-cloud environments.

[related-resource]

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI