Blog
/
/
November 4, 2020

Mimecast Link Rewriting: A False Sense of Security Exposed

Gain insight into modern email security methods to ensure you avoid pitfalls of traditional email gateways. Learn why rewriting links isn't the best approach.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Nov 2020

Many organizations feel secure in the knowledge that their email gateway is rewriting all of the harmful links targeting their employees. Link rewriting is a common technique that involves encoding URLs sent via email into a link that redirects the user to the gateway’s own servers. These servers contain some unique codes that then track the user and perform later checks to determine whether the link is malicious.

This blog reveals why the sense of protection this gives is a fallacy, and how rewriting links does not equate to protecting the end user from actual harm. In fact, gateways’ reliance on this technique is actually an indicator of one of their fundamental flaws: their reliance on rules and signatures of previously recognized threats, and their consequent inability to stop threats on the first encounter. The reason these tools pre-emptively rewrite links is so they can make a determination later on: with the link now pointing to their own servers, they can leverage their updated assessment of that link and block a malicious site, once more information has become available (often once ‘patient zero’ has become infected; and the damage is already done).

Email security that recognizes and blocks threats on the first encounter has no need to rewrite every link.

How to measure success

If the sheer number of links rewritten is to be our measure of success, then traditional gateways win every time. For instance, Mimecast will usually rewrite 100% of the harmful links that Antigena Email locks. In fact, it rewrites nearly 100% of all links. That even includes links pointing to trusted websites like LinkedIn and Twitter, and even emails containing links to the recipient’s own website. So when tim.cook[at]apple.com receives a link to apple.com, for example, ‘mimecast.com’ will still dominate the URL.

Some organizations suffering from low first-encounter catch rates with their gateways have responded by increasing employee education: training the human to spot the giveaways of a phishing email. With email attacks getting more targeted and sophisticated, humans should never be considered the last line of defense, and rewriting links makes the situation even worse. If you’re training your users to watch which links they’re clicking, and every one of those links reads ‘mimecast.com’, how are your users supposed to learn what’s good, bad, or sketchy when every URL looks the same?

Moreover, when Mimecast’s URL gateway is down, these rewritten links don’t work (and the same applies to protected attachments). This results in business downtime which is intolerable for businesses in these critical and challenging times.

We can see the effect of blanket rewriting through Darktrace’s user interface, which shows us the frequency of rewritten links over time. Looking back over three days, this particular customer – who was trialing Antigena Email alongside Mimecast, received 155,008 emails containing rewritten links. Of those, 1,478 were anomalous, and Darktrace’s AI acted to immediately lock those links, protecting even the first recipient from harm. The remaining 153,530 links were all unnecessarily rewritten.

Figure 1: Over 155,000 inbound emails contained rewritten Mimecast links

If it comes to actually stopping the threat when a user goes to click that rewritten link, gateway tools fail. Their reliance on legacy checks like reputation, deny-lists, and rules and signatures mean that malicious content will sometimes sit for days or weeks without any meaningful action, as the technology requires at least one – and usually many – ‘patient zeros’ before determining a URL or an attachment as malicious, and updating their deny-lists.

Let’s look at the case of an attack launched from entirely new infrastructure: from a freshly purchased domain, and containing a newly created malicious payload. None of the typical metrics legacy tools search for appear as malicious, and so of course, the threat gets through, and ‘patient zero’ is infected.

Figure 2: ‘Patient Zero’ denotes the first victim of an email attack.

It inevitably takes time for the malicious link to be recognized as malicious, and for that to be reported. By this point, large swathes of the workforce have also become infected. We can call this the ‘time to detection’.

Figure 3: The time to detection

As legacy tools then update their lists in recognition of the attack, the malware continues to infect the organization, with more users engaging in the contents of the email.

Figure 4: The legacy tool reacts

Finally, the legacy tool reacts, updating its deny-list and providing substantive action to protect the end user from harm. By this point, hundreds of users across multiple organizations may have interacted with the links in some way.

Figure 5: Many ‘patient zeros’ are required before the threat is deny-listed

Email gateways’ reliance on rewriting links is directly related to their legacy approach to detection. They do it so that later down the line, when they have updated information about a potential attack, they can take action. Until then, it’s just a rewritten link, and if clicked on, it will bring the user to whatever website was hiding underneath it.

These links are also rewritten in an attempt to grasp an understanding of what user network behavior looks like. But far from giving an accurate or in-depth picture of network activity, this method barely scratches the surface of the wider behaviors of users across the organization.

Alongside Darktrace’s Enterprise Immune System, Antigena Email can pull these insights directly from a unified, central AI engine that has complete and direct visibility over an organization’s entire digital estate – not just links accessed from emails, but network activity as a whole – and not a makeshift version where it is assumed people only visit links through emails. It also pulls insights from user behavior in the cloud and across SaaS applications – from Salesforce to Microsoft Teams.

Taking real action in real time

While gateways rewrite everything in order to leave the door open to make assessments later on, Darktrace is able to take action when it needs to – before the email poses a threat in the inbox. The technology is uniquely able to do this due to its high success rates for malicious emails seen on first encounter. And it’s able to achieve such high success rates because it takes a much more sophisticated approach to detection that uses AI to catch a threat – regardless of whether or not that threat has been seen before.

Darktrace’s understanding of ‘normal’ for the human behind email communications allows it to not only detect subtle deviations that are indicative of a cyber-threat, but respond to that threat at the point of delivery. This response is targeted, proportionate and non-disruptive, and varies according to the nature of the attack. While Darktrace’s unsupervised machine learning can accurately identify deviations from ‘normal’, its supervised machine learning models are able to classify the intention behind the email; what the attacker is trying to do (extort information, solicit a payment, harvest credentials, or convince the user to download a malicious attachment).

Crucially, organizations trialing both approaches to security find that Antigena Email consistently identifies threats that Mimecast and other tools miss. With the scale and sophistication of email attacks growing, the need for a proactive and modern approach to email security is paramount. Organizations need to ensure they are measuring their sense of protection with the right yardstick, and adopt a technology that can take meaningful action before damage is done.

Trial Antigena Email today

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product

More in this series

No items found.

Blog

/

Identity

/

July 3, 2025

Top Eight Threats to SaaS Security and How to Combat Them

Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

/

July 2, 2025

Pre-CVE Threat Detection: 10 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability

Default blog imageDefault blog image

Vulnerabilities are weaknesses in a system that can be exploited by malicious actors to gain unauthorized access or to disrupt normal operations. Common Vulnerabilities and Exposures (or CVEs) are a list of publicly disclosed cybersecurity vulnerabilities that can be tracked and mitigated by the security community.

When a vulnerability is discovered, the standard practice is to report it to the vendor or the responsible organization, allowing them to develop and distribute a patch or fix before the details are made public. This is known as responsible disclosure.

With a record-breaking 40,000 CVEs reported for 2024 and a predicted higher number for 2025 by the Forum for Incident Response and Security Teams (FIRST) [1], anomaly-detection is essential for identifying these potential risks. The gap between exploitation of a zero-day and disclosure of the vulnerability can sometimes be considerable, and retroactively attempting to identify successful exploitation on your network can be challenging, particularly if taking a signature-based approach.

Detecting threats without relying on CVE disclosure

Abnormal behaviors in networks or systems, such as unusual login patterns or data transfers, can indicate attempted cyber-attacks, insider threats, or compromised systems. Since Darktrace does not rely on rules or signatures, it can detect malicious activity that is anomalous even without full context of the specific device or asset in question.

For example, during the Fortinet exploitation late last year, the Darktrace Threat Research team were investigating a different Fortinet vulnerability, namely CVE 2024-23113, for exploitation when Mandiant released a security advisory around CVE 2024-47575, which aligned closely with Darktrace’s findings.

Retrospective analysis like this is used by Darktrace’s threat researchers to better understand detections across the threat landscape and to add additional context.

Below are ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

Trends in pre-cve exploitation

Often, the disclosure of an exploited vulnerability can be off the back of an incident response investigation related to a compromise by an advanced threat actor using a zero-day. Once the vulnerability is registered and publicly disclosed as having been exploited, it can kick off a race between the attacker and defender: attack vs patch.

Nation-state actors, highly skilled with significant resources, are known to use a range of capabilities to achieve their target, including zero-day use. Often, pre-CVE activity is “low and slow”, last for months with high operational security. After CVE disclosure, the barriers to entry lower, allowing less skilled and less resourced attackers, like some ransomware gangs, to exploit the vulnerability and cause harm. This is why two distinct types of activity are often seen: pre and post disclosure of an exploited vulnerability.

Darktrace saw this consistent story line play out during several of the Fortinet and PAN OS threat actor campaigns highlighted above last year, where nation-state actors were seen exploiting vulnerabilities first, followed by ransomware gangs impacting organizations [2].

The same applies with the recent SAP Netweaver exploitations being tied to a China based threat actor earlier this spring with subsequent ransomware incidents being observed [3].

Autonomous Response

Anomaly-based detection offers the benefit of identifying malicious activity even before a CVE is disclosed; however, security teams still need to quickly contain and isolate the activity.

For example, during the Ivanti chaining exploitation in the early part of 2025, a customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device.

This pre-CVE detection and response by Darktrace occurred 11 days before any public disclosure, demonstrating the value of an anomaly-based approach.

In some cases, customers have even reported that Darktrace stopped malicious exploitation of devices several days before a public disclosure of a vulnerability.

For example, During the ConnectWise exploitation, a customer informed the team that Darktrace had detected malicious software being installed via remote access. Upon further investigation, four servers were found to be impacted, while Autonomous Response had blocked outbound connections and enforced patterns of life on impacted devices.

Conclusion

By continuously analyzing behavioral patterns, systems can spot unusual activities and patterns from users, systems, and networks to detect anomalies that could signify a security breach.

Through ongoing monitoring and learning from these behaviors, anomaly-based security systems can detect threats that traditional signature-based solutions might miss, while also providing detailed insights into threat tactics, techniques, and procedures (TTPs). This type of behavioral intelligence supports pre-CVE detection, allows for a more adaptive security posture, and enables systems to evolve with the ever-changing threat landscape.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO), Emma Fougler (Global Threat Research Operations Lead), Ryan Traill (Analyst Content Lead)

References and further reading:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

Related Darktrace blogs:

*Self-reported by customer, confirmed afterwards.

**Updated January 2024 blog now reflects current findings

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI