Blog

Eメール

Writing wrongs:Mimecastのリンクがなぜ誤ったセキュリティ認識を与えたか

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Nov 2020
04
Nov 2020
従来のメールゲートウェイ製品は、潜在的な攻撃に関する最新の情報を入手した時点で対策を講じることができるよう、リンクを先回りして書き換えていました。このブログでは、この方法の落とし穴を明らかにし、より現代的なEメールセキュリティのアプローチについて考察します。

多くの組織は、従業員を狙った有害なリンクをEメールゲートウェイがすべてリライトしていることに安心感を持っています。リンクのリライトはよく使われるテクニックで、Eメールで送信されたURLをエンコードしてゲートウェイ自身のサーバーにユーザーをリダイレクトするものです。これらのサーバーには、ユーザーを追跡し、またリンクが悪意あるものであるかどうかを判断するチェックを後で実行するためのコードが含まれています。

本稿では、この保護の意識が間違ったものであり、リンクのリライトがエンドユーザーを実害から守ることと同じではないことを説明します。実際、ゲートウェイがこのテクニックに依存していることはそれらの根本的な欠陥の1つを示しているのです。それは、以前に識別された脅威のルールやシグネチャに依存していることと、その結果として初めて遭遇した脅威を阻止できないことです。これらのツールがまずリンクをリライトする理由は、後で判断できるようにするためなのです。リライトによってリンクが自分のサーバーにリダイレクトされたため、そのリンクについての新しい情報が入手されれば、その更新された情報を使って悪意あるリンクをブロックすることができます(多くの場合「第一号患者」が感染した後であり、被害はすでに生じています)。

初めて遭遇した脅威を識別しブロックできるEメールセキュリティであれば、すべてのリンクをリライトする必要はありません。

成功をどう測るか

リライトされたリンクの数が成功の指標であれば、従来型ゲートウェイが毎回勝利します。たとえば、MimecastはDarktrace Emailであればロックする有害なリンクを、通常100%書き換えます。実際、すべてのリンクの100%近くがリライトされています。これには、信頼のおけるウェブサイト、たとえばLinkedInやTwitterなどへのリンクも含まれ、さらには受信者自身のウェブサイトへのリンクを含むEメールもリライトされてしまいます。したがって、たとえばティム・クック氏のアドレス(tim.cook[at]apple.com)がapple.comへのリンクを受信しても、‘mimecast.com’ がURLを支配するのです。

ゲートウェイの脅威の初回捕捉率が低いことに悩んでいる組織の中には、従業員の教育を強化することで対応しているところもあります。フィッシングメールの特徴を見分けるよう人間をトレーニングするのです。Eメール攻撃がより標的型になり、精巧になるなかで、人間が最終防衛ラインと見なされるべきではまったくありませんし、リンクのリライトは状況をさらに悪化させてしまうのです。クリックするリンクをよく確かめるようユーザーをトレーニングしても、それらのリンクがすべて ‘mimecast.com’ と書いてあった場合、ユーザーは同じURLのどれが良い、悪い、あるいは怪しいと分かるのでしょうか?

さらに、MimecastのURLゲートウェイがダウンしている場合、これらのリライトされたリンクは機能しません(添付ファイルの保護にも同じことが言えます)。これは業務のダウンタイムにつながり、現在の厳しいビジネス環境において許容できないことです。

全面的なURLリライトの影響は、Darktraceのユーザーインターフェイスで確認することができます。そこにはリンクのリライトの回数が時系列で示されています。過去3日間を振り返ってみると、この顧客(Mimecastと併用してDarktrace Emailをトライアル利用中)はリライトされたリンクを含む155,008件のEメールを受信しています。そのうちの1,478件が異常なリンクでしたが、DarktraceのAIはこれらのリンクを即座にロックし、最初の受信者であっても被害から守りました。残りの153,530件はすべて不必要にリライトされたものでした。

図1:155,000 件以上の受信メールにリライトされたMimecastリンクが含まれていました

そのリライトされたリンクをユーザがクリックしたときに、実際に脅威を阻止できるかに関して言えば、ゲートウェイツールにはそれは不可能です。評判、ブラックリスト、ルールやシグネチャなどの従来のチェック機能に依存しているため、悪意あるコンテンツが時には何日もあるいは何週間も、意味のあるアクションを取られることなく居座ります。このテクノロジーは少なくとも1人の、そして通常は大勢の「第一号患者」が発生しないと、URLあるいは添付ファイルを悪意あるものと判断してブラックリストを更新できないからです。

購入したばかりのドメインから開始され、新たに作成された悪意あるペイロードを含む攻撃の例を考えてみましょう。従来のツールが探す典型的なメトリックのいずれも悪意あるものとは見えず、当然の結果として、脅威は侵入し、「第一号患者」が感染します。

図2:「第一号患者」はEメール攻撃の最初の被害者を指します

悪意あるリンクが悪意あるものとして認識され、それが報告されるまでにはどうしても時間がかかります。この時点で、ワークフォースのかなりの範囲が同じく感染しています。これを「検知までの時間」と呼ぶことができます。

図3:検知までの時間

攻撃を認識して従来型ツールがリストを更新する間も、さらに多くのユーザーがEメールのコンテンツに反応し、マルウェアは組織を感染させ続けます。

図4:従来型ツールの対応

ようやく、従来型ツールが対応し、ブラックリストを更新してユーザーを被害から守るための実質的なアクションを提供します。この時点で、複数の組織に渡る数百人のユーザーが何らかの形でリンクに感染した可能性があります。

図5:脅威がブラックリストに記録されるまでに多数の「第一号患者」が必要

Eメールゲートウェイのリンクのリライトへの依存は、検知に対するそれらの古いアプローチと直接関係があります。この方法をとるのは、後になって、攻撃の可能性についての新しい情報が入手されたときに、アクションをとれるようにするためです。それまでは、単にリンクがリライトされただけで、もしクリックすればユーザーはリンクの下に隠されていたウェブサイトに誘導されてしまうのです。

リンクのリライトは、ユーザーのネットワーク上の動作についての理解を得ようとする試みでもあります。しかし、ネットワークアクティビティの正確なまたは詳細な姿を描き出すには程遠いこの手法は、組織内のユーザーの挙動のごく一部に触れているにすぎません。

Darktrace Emailは、Darktrace DETECTと協働しながらこうした情報を、組織のデジタルエステート全体に完全かつ直接的な可視性を持つ中央のAIエンジンから直接的に取得します。この全体とは、Eメールからアクセスされたリンクだけではなく、ネットワークアクティビティ全体を意味し、人々がEメールを通じてのみリンク先にアクセスするという仮定に基づいた簡易的なバージョンでもありません。また、SalesforceからMicrosoft Teamsまで、クラウドやSaaSアプリケーション内でのユーザーの挙動からも情報を取得します。

リアルなアクションをリアルタイムに実行

ゲートウェイは後から評価を行う可能性を残すためにすべてをリライトしますが、Darktraceはアクションをそれが必要なときに、メールが受信箱に届き脅威となる前にとることができます。このテクノロジーでそれが可能であるのは、悪意あるメールに初めて遭遇したときの成功率の高さによるものです。またそのような高い成功率を達成できるのは、AIを使ってその脅威が以前見られたものであるかどうかに関係なく捕捉するという、格段に洗練されたアプローチによるものです。

Darktraceの持つ、Eメールコミュニケーションの背後にいる人間にとっての 「正常」に対する理解により、サイバー脅威の兆候かもしれないわずかな逸脱を検知するだけでなく、受信したその時点で脅威に対処することが可能になります。この対応は的を絞ったもので、程度に応じて中断を伴うことなく行われ、攻撃の性質に応じてさまざまな形があります。Darktraceの教師なし機械学習は「正常」からの逸脱を正確に特定し、教師付き機械学習モデルはEメールに隠された意図、つまり攻撃者が何をしようとしているか(情報を引き出す、送金をさせる認証情報を収集する、あるいは悪意ある添付ファイルをダウンロードさせるなど)を分類することができます。

重要なこととして、両方のセキュリティアプローチをトライアルで利用している複数の組織によれば、 Darktrace Email はMimecastや他のツールで見逃されてしまう脅威を一貫して特定しているということです。Eメール攻撃の規模と精巧さが増すなかで、Eメールセキュリティへの積極的かつ最新のアプローチの必要性は最重要課題です。保護が万全であることを正しい指標で確認し、被害が生じる前に意味のあるアクションを取ることのできるテクノロジーを導入しなければなりません。

Darktrace Emailの無償トライアル

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Dan Fein
VP, Product

Based in New York, Dan joined Darktrace’s technical team in 2015, helping customers quickly achieve a complete and granular understanding of Darktrace’s product suite. Dan has a particular focus on Darktrace/Email, ensuring that it is effectively deployed in complex digital environments, and works closely with the development, marketing, sales, and technical teams. Dan holds a Bachelor’s degree in Computer Science from New York University.

Book a 1-1 meeting with one of our experts
この記事を共有
USE CASES
該当する項目はありません。
PRODUCT SPOTLIGHT
該当する項目はありません。
COre coverage
該当する項目はありません。

More in this series

該当する項目はありません。

Blog

該当する項目はありません。

The State of AI in Cybersecurity: How AI will impact the cyber threat landscape in 2024

Default blog imageDefault blog image
22
Apr 2024

About the AI Cybersecurity Report

We surveyed 1,800 CISOs, security leaders, administrators, and practitioners from industries around the globe. Our research was conducted to understand how the adoption of new AI-powered offensive and defensive cybersecurity technologies are being managed by organizations.

This blog is continuing the conversation from our last blog post “The State of AI in Cybersecurity: Unveiling Global Insights from 1,800 Security Practitioners” which was an overview of the entire report. This blog will focus on one aspect of the overarching report, the impact of AI on the cyber threat landscape.

To access the full report click here.

Are organizations feeling the impact of AI-powered cyber threats?

Nearly three-quarters (74%) state AI-powered threats are now a significant issue. Almost nine in ten (89%) agree that AI-powered threats will remain a major challenge into the foreseeable future, not just for the next one to two years.

However, only a slight majority (56%) thought AI-powered threats were a separate issue from traditional/non AI-powered threats. This could be the case because there are few, if any, reliable methods to determine whether an attack is AI-powered.

Identifying exactly when and where AI is being applied may not ever be possible. However, it is possible for AI to affect every stage of the attack lifecycle. As such, defenders will likely need to focus on preparing for a world where threats are unique and are coming faster than ever before.

a hypothetical cyber attack augmented by AI at every stage

Are security stakeholders concerned about AI’s impact on cyber threats and risks?

The results from our survey showed that security practitioners are concerned that AI will impact organizations in a variety of ways. There was equal concern associated across the board – from volume and sophistication of malware to internal risks like leakage of proprietary information from employees using generative AI tools.

What this tells us is that defenders need to prepare for a greater volume of sophisticated attacks and balance this with a focus on cyber hygiene to manage internal risks.

One example of a growing internal risks is shadow AI. It takes little effort for employees to adopt publicly-available text-based generative AI systems to increase their productivity. This opens the door to “shadow AI”, which is the use of popular AI tools without organizational approval or oversight. Resulting security risks such as inadvertent exposure of sensitive information or intellectual property are an ever-growing concern.

Are organizations taking strides to reduce risks associated with adoption of AI in their application and computing environment?

71.2% of survey participants say their organization has taken steps specifically to reduce the risk of using AI within its application and computing environment.

16.3% of survey participants claim their organization has not taken these steps.

These findings are good news. Even as enterprises compete to get as much value from AI as they can, as quickly as possible, they’re tempering their eager embrace of new tools with sensible caution.

Still, responses varied across roles. Security analysts, operators, administrators, and incident responders are less likely to have said their organizations had taken AI risk mitigation steps than respondents in other roles. In fact, 79% of executives said steps had been taken, and only 54% of respondents in hands-on roles agreed. It seems that leaders believe their organizations are taking the needed steps, but practitioners are seeing a gap.

Do security professionals feel confident in their preparedness for the next generation of threats?

A majority of respondents (six out of every ten) believe their organizations are inadequately prepared to face the next generation of AI-powered threats.

The survey findings reveal contrasting perceptions of organizational preparedness for cybersecurity threats across different regions and job roles. Security administrators, due to their hands-on experience, express the highest level of skepticism, with 72% feeling their organizations are inadequately prepared. Notably, respondents in mid-sized organizations feel the least prepared, while those in the largest companies feel the most prepared.

Regionally, participants in Asia-Pacific are most likely to believe their organizations are unprepared, while those in Latin America feel the most prepared. This aligns with the observation that Asia-Pacific has been the most impacted region by cybersecurity threats in recent years, according to the IBM X-Force Threat Intelligence Index.

The optimism among Latin American respondents could be attributed to lower threat volumes experienced in the region, but it's cautioned that this could change suddenly (1).

What are biggest barriers to defending against AI-powered threats?

The top-ranked inhibitors center on knowledge and personnel. However, issues are alluded to almost equally across the board including concerns around budget, tool integration, lack of attention to AI-powered threats, and poor cyber hygiene.

The cybersecurity industry is facing a significant shortage of skilled professionals, with a global deficit of approximately 4 million experts (2). As organizations struggle to manage their security tools and alerts, the challenge intensifies with the increasing adoption of AI by attackers. This shift has altered the demands on security teams, requiring practitioners to possess broad and deep knowledge across rapidly evolving solution stacks.

Educating end users about AI-driven defenses becomes paramount as organizations grapple with the shortage of professionals proficient in managing AI-powered security tools. Operationalizing machine learning models for effectiveness and accuracy emerges as a crucial skill set in high demand. However, our survey highlights a concerning lack of understanding among cybersecurity professionals regarding AI-driven threats and the use of AI-driven countermeasures indicating a gap in keeping pace with evolving attacker tactics.

The integration of security solutions remains a notable problem, hindering effective defense strategies. While budget constraints are not a primary inhibitor, organizations must prioritize addressing these challenges to bolster their cybersecurity posture. It's imperative for stakeholders to recognize the importance of investing in skilled professionals and integrated security solutions to mitigate emerging threats effectively.

To access the full report click here.

参考文献

1. IBM, X-Force Threat Intelligence Index 2024, Available at: https://www.ibm.com/downloads/cas/L0GKXDWJ

2. ISC2, Cybersecurity Workforce Study 2023, Available at: https://media.isc2.org/-/media/Project/ISC2/Main/Media/ documents/research/ISC2_Cybersecurity_Workforce_Study_2023.pdf?rev=28b46de71ce24e6ab7705f6e3da8637e

続きを読む
著者について

Blog

Inside the SOC

Sliver C2: How Darktrace Provided a Sliver of Hope in the Face of an Emerging C2 Framework

Default blog imageDefault blog image
17
Apr 2024

Offensive Security Tools

As organizations globally seek to for ways to bolster their digital defenses and safeguard their networks against ever-changing cyber threats, security teams are increasingly adopting offensive security tools to simulate cyber-attacks and assess the security posture of their networks. These legitimate tools, however, can sometimes be exploited by real threat actors and used as genuine actor vectors.

What is Sliver C2?

Sliver C2 is a legitimate open-source command-and-control (C2) framework that was released in 2020 by the security organization Bishop Fox. Silver C2 was originally intended for security teams and penetration testers to perform security tests on their digital environments [1] [2] [5]. In recent years, however, the Sliver C2 framework has become a popular alternative to Cobalt Strike and Metasploit for many attackers and Advanced Persistence Threat (APT) groups who adopt this C2 framework for unsolicited and ill-intentioned activities.

The use of Sliver C2 has been observed in conjunction with various strains of Rust-based malware, such as KrustyLoader, to provide backdoors enabling lines of communication between attackers and their malicious C2 severs [6]. It is unsurprising, then, that it has also been leveraged to exploit zero-day vulnerabilities, including critical vulnerabilities in the Ivanti Connect Secure and Policy Secure services.

In early 2024, Darktrace observed the malicious use of Sliver C2 during an investigation into post-exploitation activity on customer networks affected by the Ivanti vulnerabilities. Fortunately for affected customers, Darktrace DETECT™ was able to recognize the suspicious network-based connectivity that emerged alongside Sliver C2 usage and promptly brought it to the attention of customer security teams for remediation.

How does Silver C2 work?

Given its open-source nature, the Sliver C2 framework is extremely easy to access and download and is designed to support multiple operating systems (OS), including MacOS, Windows, and Linux [4].

Sliver C2 generates implants (aptly referred to as ‘slivers’) that operate on a client-server architecture [1]. An implant contains malicious code used to remotely control a targeted device [5]. Once a ‘sliver’ is deployed on a compromised device, a line of communication is established between the target device and the central C2 server. These connections can then be managed over Mutual TLS (mTLS), WireGuard, HTTP(S), or DNS [1] [4]. Sliver C2 has a wide-range of features, which include dynamic code generation, compile-time obfuscation, multiplayer-mode, staged and stageless payloads, procedurally generated C2 over HTTP(S) and DNS canary blue team detection [4].

Why Do Attackers Use Sliver C2?

Amidst the multitude of reasons why malicious actors opt for Sliver C2 over its counterparts, one stands out: its relative obscurity. This lack of widespread recognition means that security teams may overlook the threat, failing to actively search for it within their networks [3] [5].

Although the presence of Sliver C2 activity could be representative of authorized and expected penetration testing behavior, it could also be indicative of a threat actor attempting to communicate with its malicious infrastructure, so it is crucial for organizations and their security teams to identify such activity at the earliest possible stage.

Darktrace’s Coverage of Sliver C2 Activity

Darktrace’s anomaly-based approach to threat detection means that it does not explicitly attempt to attribute or distinguish between specific C2 infrastructures. Despite this, Darktrace was able to connect Sliver C2 usage to phases of an ongoing attack chain related to the exploitation of zero-day vulnerabilities in Ivanti Connect Secure VPN appliances in January 2024.

Around the time that the zero-day Ivanti vulnerabilities were disclosed, Darktrace detected an internal server on one customer network deviating from its expected pattern of activity. The device was observed making regular connections to endpoints associated with Pulse Secure Cloud Licensing, indicating it was an Ivanti server. It was observed connecting to a string of anomalous hostnames, including ‘cmjk3d071amc01fu9e10ae5rt9jaatj6b.oast[.]live’ and ‘cmjft14b13vpn5vf9i90xdu6akt5k3pnx.oast[.]pro’, via HTTP using the user agent ‘curl/7.19.7 (i686-redhat-linux-gnu) libcurl/7.63.0 OpenSSL/1.0.2n zlib/1.2.7’.

Darktrace further identified that the URI requested during these connections was ‘/’ and the top-level domains (TLDs) of the endpoints in question were known Out-of-band Application Security Testing (OAST) server provider domains, namely ‘oast[.]live’ and ‘oast[.]pro’. OAST is a testing method that is used to verify the security posture of an application by testing it for vulnerabilities from outside of the network [7]. This activity triggered the DETECT model ‘Compromise / Possible Tunnelling to Bin Services’, which breaches when a device is observed sending DNS requests for, or connecting to, ‘request bin’ services. Malicious actors often abuse such services to tunnel data via DNS or HTTP requests. In this specific incident, only two connections were observed, and the total volume of data transferred was relatively low (2,302 bytes transferred externally). It is likely that the connections to OAST servers represented malicious actors testing whether target devices were vulnerable to the Ivanti exploits.

The device proceeded to make several SSL connections to the IP address 103.13.28[.]40, using the destination port 53, which is typically reserved for DNS requests. Darktrace recognized that this activity was unusual as the offending device had never previously been observed using port 53 for SSL connections.

Model Breach Event Log displaying the ‘Application Protocol on Uncommon Port’ DETECT model breaching in response to the unusual use of port 53.
Figure 1: Model Breach Event Log displaying the ‘Application Protocol on Uncommon Port’ DETECT model breaching in response to the unusual use of port 53.

Figure 2: Model Breach Event Log displaying details pertaining to the ‘Application Protocol on Uncommon Port’ DETECT model breach, including the 100% rarity of the port usage.
Figure 2: Model Breach Event Log displaying details pertaining to the ‘Application Protocol on Uncommon Port’ DETECT model breach, including the 100% rarity of the port usage.

Further investigation into the suspicious IP address revealed that it had been flagged as malicious by multiple open-source intelligence (OSINT) vendors [8]. In addition, OSINT sources also identified that the JARM fingerprint of the service running on this IP and port (00000000000000000043d43d00043de2a97eabb398317329f027c66e4c1b01) was linked to the Sliver C2 framework and the mTLS protocol it is known to use [4] [5].

An Additional Example of Darktrace’s Detection of Sliver C2

However, it was not just during the January 2024 exploitation of Ivanti services that Darktrace observed cases of Sliver C2 usages across its customer base.  In March 2023, for example, Darktrace detected devices on multiple customer accounts making beaconing connections to malicious endpoints linked to Sliver C2 infrastructure, including 18.234.7[.]23 [10] [11] [12] [13].

Darktrace identified that the observed connections to this endpoint contained the unusual URI ‘/NIS-[REDACTED]’ which contained 125 characters, including numbers, lower and upper case letters, and special characters like “_”, “/”, and “-“, as well as various other URIs which suggested attempted data exfiltration:

‘/upload/api.html?c=[REDACTED] &fp=[REDACTED]’

  • ‘/samples.html?mx=[REDACTED] &s=[REDACTED]’
  • ‘/actions/samples.html?l=[REDACTED] &tc=[REDACTED]’
  • ‘/api.html?gf=[REDACTED] &x=[REDACTED]’
  • ‘/samples.html?c=[REDACTED] &zo=[REDACTED]’

This anomalous external connectivity was carried out through multiple destination ports, including the key ports 443 and 8888.

Darktrace additionally observed devices on affected customer networks performing TLS beaconing to the IP address 44.202.135[.]229 with the JA3 hash 19e29534fd49dd27d09234e639c4057e. According to OSINT sources, this JA3 hash is associated with the Golang TLS cipher suites in which the Sliver framework is developed [14].

結論

Despite its relative novelty in the threat landscape and its lesser-known status compared to other C2 frameworks, Darktrace has demonstrated its ability effectively detect malicious use of Sliver C2 across numerous customer environments. This included instances where attackers exploited vulnerabilities in the Ivanti Connect Secure and Policy Secure services.

While human security teams may lack awareness of this framework, and traditional rules and signatured-based security tools might not be fully equipped and updated to detect Sliver C2 activity, Darktrace’s Self Learning AI understands its customer networks, users, and devices. As such, Darktrace is adept at identifying subtle deviations in device behavior that could indicate network compromise, including connections to new or unusual external locations, regardless of whether attackers use established or novel C2 frameworks, providing organizations with a sliver of hope in an ever-evolving threat landscape.

Credit to Natalia Sánchez Rocafort, Cyber Security Analyst, Paul Jennings, Principal Analyst Consultant

付録

DETECT Model Coverage

  • Compromise / Repeating Connections Over 4 Days
  • Anomalous Connection / Application Protocol on Uncommon Port
  • Anomalous Server Activity / Server Activity on New Non-Standard Port
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Compromise / Quick and Regular Windows HTTP Beaconing
  • Compromise / High Volume of Connections with Beacon Score
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / HTTP Beaconing to Rare Destination
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Large Number of Suspicious Failed Connections
  • Compromise / SSL or HTTP Beacon
  • Compromise / Possible Malware HTTP Comms
  • Compromise / Possible Tunnelling to Bin Services
  • Anomalous Connection / Low and Slow Exfiltration to IP
  • Device / New User Agent
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Numeric File Download
  • Anomalous Connection / Powershell to Rare External
  • Anomalous Server Activity / New Internet Facing System

侵害指標(IoC)一覧

18.234.7[.]23 - Destination IP - Likely C2 Server

103.13.28[.]40 - Destination IP - Likely C2 Server

44.202.135[.]229 - Destination IP - Likely C2 Server

参考文献

[1] https://bishopfox.com/tools/sliver

[2] https://vk9-sec.com/how-to-set-up-use-c2-sliver/

[3] https://www.scmagazine.com/brief/sliver-c2-framework-gaining-traction-among-threat-actors

[4] https://github[.]com/BishopFox/sliver

[5] https://www.cybereason.com/blog/sliver-c2-leveraged-by-many-threat-actors

[6] https://securityaffairs.com/158393/malware/ivanti-connect-secure-vpn-deliver-krustyloader.html

[7] https://www.xenonstack.com/insights/out-of-band-application-security-testing

[8] https://www.virustotal.com/gui/ip-address/103.13.28.40/detection

[9] https://threatfox.abuse.ch/browse.php?search=ioc%3A107.174.78.227

[10] https://threatfox.abuse.ch/ioc/1074576/

[11] https://threatfox.abuse.ch/ioc/1093887/

[12] https://threatfox.abuse.ch/ioc/846889/

[13] https://threatfox.abuse.ch/ioc/1093889/

[14] https://github.com/projectdiscovery/nuclei/issues/3330

続きを読む
著者について
Natalia Sánchez Rocafort
Cyber Security Analyst
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

無償トライアルを開始
Darktrace AI protecting a business from cyber threats.