Blog
/
Proactive Security
/
January 2, 2023

Analyst's Guide to the ActiveAI Security Platform

Understand Darktrace's full functionality in preventing and detecting cyber threats, and how analysts can benefit from Darktrace's AI technology.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Gabriel Hernandez
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
02
Jan 2023

On countless occasions, Darktrace has observed cyber-attacks disrupting business operations by using a vulnerable internet-facing asset as a starting point for infection. Finding that one entry point could be all a threat actor needs to compromise an entire organization. With the objective to prevent such vulnerabilities from being exploited, Darktrace’s latest product family includes Attack Surface Management (ASM) to continuously monitor customer attack surfaces for risks, high-impact vulnerabilities and potential external threats. 

An attack surface is the sum of exposed and internet-facing assets and the associated risks a hacker can exploit to carry out a cyber-attack. Darktrace / Attack Surface Management uses AI to understand what external assets belong to an organization by searching beyond known servers, networks, and IPs across public data sources. 

This blog discusses how Darktrace / Attack Surface Management could combine with Darktrace / NETWORK to find potential vulnerabilities and subsequent exploitation within network traffic. In particular, this blog will investigate the assets of a large Australian company which operates in the environmental sciences industry.   

Introducing ASM

In order to understand the link between PREVENT and DETECT, the core features of ASM should first be showcased.

Figure 1: The PREVENT/ASM dashboard.

When facing the landing page, the UI highlights the number of registered assets identified (with zero prior deployment). The tool then organizes the information gathered online in an easily assessable manner. Analysts can see vulnerable assets according to groupings like ‘Misconfiguration’, ‘Social Media Threat’ and ‘Information Leak’ which shows the type of risk posed to said assets.

Figure 2: The Network tab identifies the external facing assets and their hierarchy in a graphical format.

The Network tab helps analysts to filter further to take more rapid action on the most vulnerable assets and interact with them to gather more information. The image below has been filtered by assets with the ‘highest scoring’ risk.

Figure 3: PREVENT/ASM showing a high scoring asset.

Interacting with the showcased asset selected above allows pivoting to the following page, this provides more granular information around risk metrics and the asset itself. This includes a more detailed description of what the vulnerabilities are, as well as general information about the endpoint including its location, URL, web status and technologies used.

  Figure 4: Asset pages for an external web page at risk.

Filtering does not end here. Within the Insights tab, analysts can use the search bar to craft personalized queries and narrow their focus to specific types of risk such as vulnerable software, open ports, or potential cybersquatting attempts from malicious actors impersonating company brands. Likewise, filters can be made for assets that may be running software at risk from a new CVE. 

Figure 5: Insights page with custom queries to search for assets at risk of Log4J exploitation.

For each of the entries that can be read on the left-hand side, a query that could resemble the one on the top right exists. This allows users to locate specific findings beyond those risks that are categorized as critical. These broader searches can range from viewing the inventory as a whole, to seeing exposed APIs, expiring certificates, or potential shadow IT. Queries will return a list with all the assets matching the given criteria, and users can then explore them further by viewing the asset page as seen in Figure 4.

Compromise Scenario

Now that a basic explanation of PREVENT/ASM has been given, this scenario will continue to look at the Australian customer but show how Darktrace can follow a potential compromise of an at-risk ASM asset into the network. 

Having certain ports open could make it particularly easy for an attacker to access an internet-facing asset, particularly those sensitive ones such as 3389 (RDP), 445 (SMB), 135 (RPC Epmapper). Alternatively, a vulnerable program with a well-known exploitation could also aid the task for threat actors.

In this specific case, PREVENT/ASM identified multiple external assets that belonged to the customer with port 3389 open. One of these assets can be labelled as ‘Server A'. Whilst RDP connections can be protected with a password for a given user, if those were weak to bruteforce, it could be an easy task for an attacker to establish an admin session remotely to the victim machine.

Figure 6: Insights tab query filtering for open RDP port 3389.

N or zero-day vulnerabilities associated with the protocol could also be exploited; for example, CVE-2019-0708 exploits an RCE vulnerability in Remote Desktop where an unauthenticated attacker connects to the target system using RDP and sends specially crafted requests. This vulnerability is pre-authentication and requires no user interaction. 

Certain protocols are known to be sensitive according to the control they provide on a destination machine. These are developed for administrative purposes but have the potential to ease an attacker’s job if accessible. Thanks to PREVENT/ASM, security teams can anticipate such activity by having visibility over those assets that could be vulnerable. If this RDP were successfully exploited, DETECT/Network would then highlight the unusual activity performed by the compromised device as the attacker moved through the kill chain.  

There are several models within Darktrace which monitor for risks against internet facing assets. For example, ‘Server A’ which had an open 3389 port on ASM registered the following model breach in the network:

Figure 7: Breach log showing Anomalous Server Activity / New Internet Facing System model for ‘Server A’.

A model like this could highlight a misconfiguration that has caused an internal device to become unexpectedly open to the internet. It could also suggest a compromised device that has now been opened to the internet to allow further exploitation. If the result of a sudden change, such an asset would also be detected by ASM and highlighted within the ‘New Assets’ part of the Insights page. Ultimately this connection was not malicious, however it shows the ability for security teams to track between PREVENT to DETECT and verify an initial compromise.  

A mock scenario can take this further. Using the continued example of an open port 3389 intrusion, new RDP cookies may be registered (perhaps even administrative). This could enable further lateral movement and eventual privilege escalation. Various DETECT models would highlight actions of this nature, two examples are below:

Figure 8: RDP Lateral Movement related model breaches on customer.

Alongside efforts to move laterally, Darktrace may find attempts at reconnaissance or C2 communication from compromised internet facing devices by looking at Darktrace DETECT model breaches including ‘Network Scan’, ‘SMB Scanning’ and ‘Active Directory Reconnaissance’. In this case the network also saw repeated failed internal connections followed by the ‘LDAP Brute-Force Activity model’ around the same time as the RDP activity. Had this been malicious, DETECT would then continue to provide visibility into the C2 and eventual malware deployment stages. 

With the combined visibility of both tools, Darktrace users have support for greater triage across the whole kill chain. For customers also using RESPOND, actions will be taken from the DETECT alerting to subsequently block malicious activity. In doing so, inputs will have fed across the whole Cyber AI Loop by having learnt from PREVENT, DETECT and RESPOND.

This feed from the Cyber AI Loop works both ways. In Figure 9, below, a DETECT model breach shows a customer alert from an internet facing device: 

Figure 9: Model breach on internet-facing server.

This breach took place because an established server suddenly started serving HTTP sessions on a port commonly used for HTTPS (secure) connections. This could be an indicator that a criminal may have gained control of the device and set it to listen on the given port and enable direct connection to the attacker’s machine or command and control server. This device can be viewed by an analyst in its Darktrace PREVENT version, where new metrics can be observed from a perspective outside of the network.

Figure 10: Assets page for server. PREVENT shows few risks for this asset. 

This page reports the associated risks that could be leveraged by malicious actors. In this case, the events are not correlated, but in the event of an attack, this backwards pivoting could help to pinpoint a weak link in the chain and show what allowed the attacker into the network. In doing so this supports the remediation and recovery process. More importantly though, it allows organizations to be proactive and take appropriate security measures required before it could ever be exploited.

Concluding Thoughts

The combination of Darktrace / Attack Surface Management with Darktrace / NETWORK provides wide and in-depth visibility over a company’s infrastructure. Through the Darktrace platform, this coverage is continually learning and updating based on inputs from both. ASM can show companies the potential weaknesses that a cybercriminal could take advantage of. In turn this allows them to prioritize patching, updating, and management of their internet facing assets. At the same time, Darktrace will show the anomalous behavior of any of these internet facing devices, enabling security teams or respond to stop an attack. Use of these tools by an analyst together is effective in gaining informed security data which can be fed back to IT management. Leveraging this allows normal company operations to be performed without the worry of cyber disruption.

Credit to: Emma Foulger, Senior Cyber Analyst at Darktrace

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Gabriel Hernandez

More in this series

No items found.

Blog

/

Network

/

May 16, 2025

Catching a RAT: How Darktrace neutralized AsyncRAT

woman working on laptopDefault blog imageDefault blog image

What is a RAT?

As the proliferation of new and more advanced cyber threats continues, the Remote Access Trojan (RAT) remains a classic tool in a threat actor's arsenal. RATs, whether standardized or custom-built, enable attackers to remotely control compromised devices, facilitating a range of malicious activities.

What is AsyncRAT?

Since its first appearance in 2019, AsyncRAT has become increasingly popular among a wide range of threat actors, including cybercriminals and advanced persistent threat (APT) groups.

Originally available on GitHub as a legitimate tool, its open-source nature has led to widespread exploitation. AsyncRAT has been used in numerous campaigns, including prolonged attacks on essential US infrastructure, and has even reportedly penetrated the Chinese cybercriminal underground market [1] [2].

How does AsyncRAT work?

Original source code analysis of AsyncRAT demonstrates that once installed, it establishes persistence via techniques such as creating scheduled tasks or registry keys and uses SeDebugPrivilege to gain elevated privileges [3].

Its key features include:

  • Keylogging
  • File search
  • Remote audio and camera access
  • Exfiltration techniques
  • Staging for final payload delivery

These are generally typical functions found in traditional RATs. However, it also boasts interesting anti-detection capabilities. Due to the popularity of Virtual Machines (VM) and sandboxes for dynamic analysis, this RAT checks for the manufacturer via the WMI query 'Select * from Win32_ComputerSystem' and looks for strings containing 'VMware' and 'VirtualBox' [4].

Darktrace’s coverage of AsyncRAT

In late 2024 and early 2025, Darktrace observed a spike in AsyncRAT activity across various customer environments. Multiple indicators of post-compromise were detected, including devices attempting or successfully connecting to endpoints associated with AsyncRAT.

On several occasions, Darktrace identified a clear association with AsyncRAT through the digital certificates of the highlighted SSL endpoints. Darktrace’s Real-time Detection effectively identified and alerted on suspicious activities related to AsyncRAT. In one notable incident, Darktrace’s Autonomous Response promptly took action to contain the emerging threat posed by AsyncRAT.

AsyncRAT attack overview

On December 20, 2024, Darktrace first identified the use of AsyncRAT, noting a device successfully establishing SSL connections to the uncommon external IP 185.49.126[.]50 (AS199654 Oxide Group Limited) via port 6606. The IP address appears to be associated with AsyncRAT as flagged by open-source intelligence (OSINT) sources [5]. This activity triggered the device to alert the ‘Anomalous Connection / Rare External SSL Self-Signed' model.

Model alert in Darktrace / NETWORK showing the repeated SSL connections to a rare external Self-Signed endpoint, 185.49.126[.]50.
Figure 1: Model alert in Darktrace / NETWORK showing the repeated SSL connections to a rare external Self-Signed endpoint, 185.49.126[.]50.

Following these initial connections, the device was observed making a significantly higher number of connections to the same endpoint 185.49.126[.]50 via port 6606 over an extended period. This pattern suggested beaconing activity and triggered the 'Compromise/Beaconing Activity to External Rare' model alert.

Further analysis of the original source code, available publicly, outlines the default ports used by AsyncRAT clients for command-and-control (C2) communications [6]. It reveals that port 6606 is the default port for creating a new AsyncRAT client. Darktrace identified both the Certificate Issuer and the Certificate Subject as "CN=AsyncRAT Server". This SSL certificate encrypts the packets between the compromised system and the server. These indicators of compromise (IoCs) detected by Darktrace further suggest that the device was successfully connecting to a server associated with AsyncRAT.

Model alert in Darktrace / NETWORK displaying the Digital Certificate attributes, IP address and port number associated with AsyncRAT.
Figure 2: Model alert in Darktrace / NETWORK displaying the Digital Certificate attributes, IP address and port number associated with AsyncRAT.
Darktrace’s detection of repeated connections to the suspicious IP address 185.49.126[.]50 over port 6606, indicative of beaconing behavior.
Figure 3: Darktrace’s detection of repeated connections to the suspicious IP address 185.49.126[.]50 over port 6606, indicative of beaconing behavior.
Darktrace's Autonomous Response actions blocking the suspicious IP address,185.49.126[.]50.
Figure 4: Darktrace's Autonomous Response actions blocking the suspicious IP address,185.49.126[.]50.

A few days later, the same device was detected making numerous connections to a different IP address, 195.26.255[.]81 (AS40021 NL-811-40021), via various ports including 2106, 6606, 7707, and 8808. Notably, ports 7707 and 8808 are also default ports specified in the original AsyncRAT source code [6].

Darktrace’s detection of connections to the suspicious endpoint 195.26.255[.]81, where the default ports (6606, 7707, and 8808) for AsyncRAT were observed.
Figure 5: Darktrace’s detection of connections to the suspicious endpoint 195.26.255[.]81, where the default ports (6606, 7707, and 8808) for AsyncRAT were observed.

Similar to the activity observed with the first endpoint, 185.49.126[.]50, the Certificate Issuer for the connections to 195.26.255[.]81 was identified as "CN=AsyncRAT Server". Further OSINT investigation confirmed associations between the IP address 195.26.255[.]81 and AsyncRAT [7].

Darktrace's detection of a connection to the suspicious IP address 195.26.255[.]81 and the domain name identified under the common name (CN) of a certificate as AsyncRAT Server
Figure 6: Darktrace's detection of a connection to the suspicious IP address 195.26.255[.]81 and the domain name identified under the common name (CN) of a certificate as AsyncRAT Server.

Once again, Darktrace's Autonomous Response acted swiftly, blocking the connections to 195.26.255[.]81 throughout the observed AsyncRAT activity.

Figure 7: Darktrace's Autonomous Response actions were applied against the suspicious IP address 195.26.255[.]81.

A day later, Darktrace again alerted to further suspicious activity from the device. This time, connections to the suspicious endpoint 'kashuub[.]com' and IP address 191.96.207[.]246 via port 8041 were observed. Further analysis of port 8041 suggests it is commonly associated with ScreenConnect or Xcorpeon ASIC Carrier Ethernet Transport [8]. ScreenConnect has been observed in recent campaign’s where AsyncRAT has been utilized [9]. Additionally, one of the ASN’s observed, namely ‘ASN Oxide Group Limited’, was seen in both connections to kashuub[.]com and 185.49.126[.]50.

This could suggest a parallel between the two endpoints, indicating they might be hosting AsyncRAT C2 servers, as inferred from our previous analysis of the endpoint 185.49.126[.]50 and its association with AsyncRAT [5]. OSINT reporting suggests that the “kashuub[.]com” endpoint may be associated with ScreenConnect scam domains, further supporting the assumption that the endpoint could be a C2 server.

Darktrace’s Autonomous Response technology was once again able to support the customer here, blocking connections to “kashuub[.]com”. Ultimately, this intervention halted the compromise and prevented the attack from escalating or any sensitive data from being exfiltrated from the customer’s network into the hands of the threat actors.

Darktrace’s Autonomous Response applied a total of nine actions against the IP address 191.96.207[.]246 and the domain 'kashuub[.]com', successfully blocking the connections.
Figure 8: Darktrace’s Autonomous Response applied a total of nine actions against the IP address 191.96.207[.]246 and the domain 'kashuub[.]com', successfully blocking the connections.

Due to the popularity of this RAT, it is difficult to determine the motive behind the attack; however, from existing knowledge of what the RAT does, we can assume accessing and exfiltrating sensitive customer data may have been a factor.

Conclusion

While some cybercriminals seek stability and simplicity, openly available RATs like AsyncRAT provide the infrastructure and open the door for even the most amateur threat actors to compromise sensitive networks. As the cyber landscape continually shifts, RATs are now being used in all types of attacks.

Darktrace’s suite of AI-driven tools provides organizations with the infrastructure to achieve complete visibility and control over emerging threats within their network environment. Although AsyncRAT’s lack of concealment allowed Darktrace to quickly detect the developing threat and alert on unusual behaviors, it was ultimately Darktrace Autonomous Response's consistent blocking of suspicious connections that prevented a more disruptive attack.

Credit to Isabel Evans (Cyber Analyst), Priya Thapa (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

  • Real-time Detection Models
       
    • Compromise / Suspicious SSL Activity
    •  
    • Compromise / Beaconing Activity To      External Rare
    •  
    • Compromise / High Volume of      Connections with Beacon Score
    •  
    • Anomalous Connection / Suspicious      Self-Signed SSL
    •  
    • Compromise / Sustained SSL or HTTP      Increase
    •  
    • Compromise / SSL Beaconing to Rare      Destination
    •  
    • Compromise / Suspicious Beaconing      Behaviour
    •  
    • Compromise / Large Number of      Suspicious Failed Connections
  •  
  • Autonomous     Response Models
       
    • Antigena / Network / Significant      Anomaly / Antigena Controlled and Model Alert
    •  
    • Antigena / Network / Significant      Anomaly / Antigena Enhanced Monitoring from Client Block

List of IoCs

·     185.49.126[.]50 - IP – AsyncRAT C2 Endpoint

·     195.26.255[.]81 – IP - AsyncRAT C2 Endpoint

·      191.96.207[.]246 – IP – Likely AsyncRAT C2 Endpoint

·     CN=AsyncRAT Server - SSL certificate - AsyncRATC2 Infrastructure

·      Kashuub[.]com– Hostname – Likely AsyncRAT C2 Endpoint

MITRE ATT&CK Mapping:

Tactic –Technique – Sub-Technique  

 

Execution– T1053 - Scheduled Task/Job: Scheduled Task

DefenceEvasion – T1497 - Virtualization/Sandbox Evasion: System Checks

Discovery– T1057 – Process Discovery

Discovery– T1082 – System Information Discovery

LateralMovement - T1021.001 - Remote Services: Remote Desktop Protocol

Collection/ Credential Access – T1056 – Input Capture: Keylogging

Collection– T1125 – Video Capture

Commandand Control – T1105 - Ingress Tool Transfer

Commandand Control – T1219 - Remote Access Software

Exfiltration– T1041 - Exfiltration Over C2 Channel

 

References

[1]  https://blog.talosintelligence.com/operation-layover-how-we-tracked-attack/

[2] https://intel471.com/blog/china-cybercrime-undergrond-deepmix-tea-horse-road-great-firewall

[3] https://www.attackiq.com/2024/08/01/emulate-asyncrat/

[4] https://www.fortinet.com/blog/threat-research/spear-phishing-campaign-with-new-techniques-aimed-at-aviation-companies

[5] https://www.virustotal.com/gui/ip-address/185.49.126[.]50/community

[6] https://dfir.ch/posts/asyncrat_quasarrat/

[7] https://www.virustotal.com/gui/ip-address/195.26.255[.]81

[8] https://www.speedguide.net/port.php?port=8041

[9] https://www.esentire.com/blog/exploring-the-infection-chain-screenconnects-link-to-asyncrat-deployment

[10] https://scammer.info/t/taking-out-connectwise-sites/153479/518?page=26

Continue reading
About the author
Isabel Evans
Cyber Analyst

Blog

/

OT

/

May 13, 2025

Revolutionizing OT Risk Prioritization with Darktrace 6.3

man in hard hat on tabletDefault blog imageDefault blog image

Powering smarter protection for industrial systems

In industrial environments, security challenges are deeply operational. Whether you’re running a manufacturing line, a power grid, or a semiconductor fabrication facility (fab), you need to know: What risks can truly disrupt my operations, and what should I focus on first?

Teams need the right tools to shift from reactive defense, constantly putting out fires, to proactively thinking about their security posture. However, most OT teams are stuck using IT-centric tools that don’t speak the language of industrial systems, are consistently overwhelmed with static CVE lists, and offer no understanding of OT-specific protocols. The result? Compliance gaps, siloed insights, and risk models that don’t reflect real-world exposure, making risk prioritization seem like a luxury.

Darktrace / OT 6.3 was built in direct response to these challenges. Developed in close collaboration with OT operators and engineers, this release introduces powerful upgrades that deliver the context, visibility, and automation security teams need, without adding complexity. It’s everything OT defenders need to protect critical operations in one platform that understands the language of industrial systems.

additions to darktrace / ot 6/3

Contextual risk modeling with smarter Risk Scoring

Darktrace / OT 6.3 introduces major upgrades to OT Risk Management, helping teams move beyond generic CVE lists with AI-driven risk scoring and attack path modeling.

By factoring in real-world exploitability, asset criticality, and operational context, this release delivers a more accurate view of what truly puts critical systems at risk.

The platform now integrates:

  • CISA’s Known Exploited Vulnerabilities (KEV) database
  • End-of-life status for legacy OT devices
  • Firewall misconfiguration analysis
  • Incident response plan alignment

Most OT environments are flooded with vulnerability data that lacks context. CVE scores often misrepresent risk by ignoring how threats move through the environment or whether assets are even reachable. Firewalls are frequently misconfigured or undocumented, and EOL (End of Life) devices, some of the most vulnerable, often go untracked.

Legacy tools treat these inputs in isolation. Darktrace unifies them, showing teams exactly which attack paths adversaries could exploit, mapped to the MITRE ATT&CK framework, with visibility into where legacy tech increases exposure.

The result: teams can finally focus on the risks that matter most to uptime, safety, and resilience without wasting resources on noise.

Automating compliance with dynamic IEC-62443 reporting

Darktrace / OT now includes a purpose-built IEC-62443-3-3 compliance module, giving industrial teams real-time visibility into their alignment with regulatory standards. No spreadsheets required!

Industrial environments are among the most heavily regulated. However, for many OT teams, staying compliant is still a manual, time-consuming process.

Darktrace / OT introduces a dedicated IEC-62443-3-3 module designed specifically for industrial environments. Security and operations teams can now map their security posture to IEC standards in real time, directly within the platform. The module automatically gathers evidence across all four security levels, flags non-compliance, and generates structured reports to support audit preparation, all in just a few clicks.Most organizations rely on spreadsheets or static tools to track compliance, without clear visibility into which controls meet standards like IEC-62443. The result is hidden gaps, resource-heavy audits, and slow remediation cycles.

Even dedicated compliance tools are often built for IT, require complex setup, and overlook the unique devices found in OT environments. This leaves teams stuck with fragmented reporting and limited assurance that their controls are actually aligned with regulatory expectations.

By automating compliance tracking, surfacing what matters most, and being purpose built for industrial environments, Darktrace / OT empowers organizations to reduce audit fatigue, eliminate blind spots, and focus resources where they’re needed most.

Expanding protocol visibility with deep insights for specialized OT operations

Darktrace has expanded its Deep Packet Inspection (DPI) capabilities to support five industry-specific protocols, across healthcare, semiconductor manufacturing, and ABB control systems.

The new protocols build on existing capabilities across all OT industry verticals and protocol types to ensure the Darktrace Self-Learning AI TM can learn intelligently about even more assets in complex industrial environments. By enabling native, AI-driven inspection of these protocols, Darktrace can identify both security threats and operational issues without relying on additional appliances or complex integrations.

Most security platforms lack native support for industry-specific protocols, creating critical visibility gaps in customer environments like healthcare, semiconductor manufacturing, and ABB-heavy industrial automation. Without deep protocol awareness, organizations struggle to accurately identify specialized OT and IoT assets, detect malicious activity concealed within proprietary protocol traffic, and generate reliable device risk profiles due to insufficient telemetry.

These blind spots result in incomplete asset inventories, and ultimately, flawed risk posture assessments which over-index for CVE patching and legacy equipment.

By combining protocol-aware detection with full-stack visibility across IT, OT, and IoT, Darktrace’s AI can correlate anomalies across domains. For example, connecting an anomaly from a Medical IoT (MIoT) device with suspicious behavior in IT systems, providing actionable, contextual insights other solutions often miss.

Conclusion

Together, these capabilities take OT security beyond alert noise and basic CVE matching, delivering continuous compliance, protocol-aware visibility, and actionable, prioritized risk insights, all inside a single, unified platform built for the realities of industrial environments.

[related-resource]

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI