Blog
/
Network
/
January 8, 2024

Uncovering CyberCartel Threats in Latin America

Examine the growing threat of cyber cartels in Latin America and learn how to safeguard against their attacks.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
08
Jan 2024

Introduction

In September 2023, Darktrace published its first Half-Year Threat Report, highlighting Threat Research, Security Operation Center (SOC), model breach, and Cyber AI Analyst analysis and trends across the Darktrace customer fleet. According to Darktrace’s Threat Report, the most observed threat type to affect Darktrace customers during the first half of 2023 was Malware-as-a-Service (Maas). The report highlighted a growing trend where malware strains, specifically in the MaaS ecosystem, “use cross-functional components from other strains as part of their evolution and customization” [1].  

Darktrace’s Threat Research team assessed this ‘Frankenstein’ approach would very likely increase, as shown by the fact that indicators of compromise (IoCs) are becoming “less and less mutually exclusive between malware strains as compromised infrastructure is used by multiple threat actors through access brokers or the “as-a-Service” market” [1].

Darktrace investigated one such threat during the last months of summer 2023, eventually leading to the discovery of CyberCartel-related activity across a significant number of Darktrace customers, especially in Latin America.

CyberCartel Overview and Darktrace Coverage

During a threat hunt, Darktrace’s Threat Research team discovered the download of a binary with a unique Uniform Resource Identifier (URI) pattern. When examining Darktrace’s customer base, it was discovered that binaries with this same URI pattern had been downloaded by a significant number of customer accounts, especially by customers based in Latin America. Although not identical, the targets and tactics, techniques, and procedures (TTPs) resembled those mentioned in an article regarding a botnet called Fenix [2], particularly active in Latin America.

During the Threat Research team’s investigation, nearly 40 potentially affected customer accounts were identified. Darktrace’s global Threat Research team investigates pervasive threats across Darktrace’s customer base daily. This cross-fleet research is based on Darktrace’s anomaly-based detection capability, Darktrace DETECT™, and revolves around technical analysis and contextualization of detection information.

Amid the investigation, further open-source intelligence (OSINT) research revealed that most indicators observed during Darktrace’s investigations were associated to a Latin American threat group named CyberCartel, with a small number of IoCs being associated with the Fenix botnet. While CyberCartel seems to have been active since 2012 and relies on MaaS offerings from well-known malware families, Fenix botnet was allegedly created at the end of last year and “specifically targets users accessing government services, particularly tax-paying individuals in Mexico and Chile” [2].

Both groups share similar targets and TTPs, as well as objectives: installing malware with information-stealing capabilities. In the case of Fenix infections, the compromised device will be added to a botnet and execute tasks given by the attacker(s); while in the case of CyberCartel, it can lead to various types of second-stage info-stealing and Man-in-the-Browser capabilities, including retrieving system information from the compromised device, capturing screenshots of the active browsing tab, and redirecting the user to fraudulent websites such as fake banking sites. According to a report by Metabase Q [2], both groups possibly share command and control (C2) infrastructure, making accurate attribution and assessment of the confidence level for which group was affecting the customer base extremely difficult. Indeed, one of the C2 IPs (104.156.149[.]33) observed on nearly 20 customer accounts during the investigation had OSINT evidence linking it to both CyberCartel and Fenix, as well as another group known to target Mexico called Manipulated Caiman [3] [4] [5].

CyberCartel and Fenix both appear to target banking and governmental services’ users based in Latin America, especially individuals from Mexico and Chile. Target institutions purportedly include tax administration services and several banks operating in the region. Malvertising and phishing campaigns direct users to pages imitating the target institutions’ webpages and prompt the download of a compressed file advertised in a pop-up window. This file claims enhance the user’s security and privacy while navigating the webpage but instead redirects the user to a compromised website hosting a zip file, which itself contains a URL file containing instructions for retrieval of the first stage payload from a remote server.

pop-up window with malicious file
Figure 1: Example of a pop-up window asking the user to download a compressed file allegedly needed to continue navigating the portal. Connections to the domain srlxlpdfmxntetflx[.]com were observed in one account investigated by Darktrace

During their investigations, the Threat Research team observed connections to 100% rare domains (e.g., situacionfiscal[.]online, consultar-rfc[.]online, facturmx[.]info), many of them containing strings such as “mx”, “rcf” and “factur” in their domain names, prior to the downloads of files with the unique URI pattern identified during the aforementioned threat hunting session.

The reference to “rfc” is likely a reference to the Registro Federal de Contribuyentes, a unique registration number issued by Mexico’s tax collection agency, Servicio de Administración Tributaria (SAT). These domains were observed as being 100% rare for the environment and were connected to a few minutes prior to connections to CyberCartel endpoints. Most of the endpoints were newly registered, with creation dates starting from only a few months earlier in the first half of 2023. Interestingly, some of these domains were very similar to legitimate government websites, likely a tactic employed by threat actors to convince users to trust the domains and to bypass security measures.

Figure 2: Screenshot from similarweb[.]com showing the degree of affinity between malicious domains situacionfiscal[.]online and facturmx[.]info and the legitimate Mexican government hostname sat[.]gob[.]mx
Figure 3: Screenshot of the likely source infection website facturmx[.]info taken when visited in a sandbox environment

In other customer networks, connections to mail clients were observed, as well as connections to win-rar[.]com, suggesting an interaction with a compressed file. Connections to legitimate government websites were also detected around the same time in some accounts. Shortly after, the infected devices were detected connecting to 100% rare IP addresses over the HTTP protocol using WebDAV user agents such as Microsoft-WebDAV-MiniRedir/10.0.X and DavCInt. Web Distributed Authoring and Versioning, in its full form, is a legitimate extension to the HTTP protocol that allows users to remotely share, copy, move and edit files hosted on a web server. Both CyberCartel and Fenix botnet reportedly abuse this protocol to retrieve the initial payload via a shortcut link. The use (or abuse) of this protocol allows attackers to evade blocklists and streamline payload distribution. In cases investigated by Darktrace, the use of this protocol was not always considered unusual for the breach device, indicating it also was commonly used for its legitimate purposes.

HTTP methods observed included PROPFIND, GET, and OPTIONS, where a higher proportion of PROPFIND requests were observed. PROPFIND is an HTTP method related to the use of WebDAV that retrieves properties in an exactly defined, machine-readable, XML document (GET responses do not have a define format). Properties are pieces of data that describe the state of a resource, i.e., data about data [7]. They are used in distributed authoring environments to provide for efficient discovery and management of resources.  

Figure 4: Device event log showing a connection to facturmx[.]info followed by a WebDAV connection to the 100% rare IP 172.86.68[.]104

In a number of cases, connections to compromised endpoints were followed by the download of one or more executable files with names following the regex pattern /(yes|4496|[A-Za-z]{8})/(((4496|4545)[A-Za-z]{24})|Herramienta_de_Seguridad_SII).(exe|jse), for example 4496UCJlcqwxvkpXKguWNqNWDivM.exe. PROPFIND and GET HTTP requests for dynamic-link library (DLL) files such as urlmon.dll and netutils.dll were also detected. These are legitimate Windows files that are essential to handle network and internet-related tasks in Windows. Irrespective of whether they had malicious or legitimate signatures, Darktrace DETECT was able to recognize that the download of these files was suspicious with rare external endpoints not previously observed on the respective customer networks.

Figure 5: Advanced Search results showing some of the HTTP requests made by the breach device to a CyberCartel endpoint via PROPFIND, GET, or OPTIONS methods for executable and DLL files

Following Darktrace DETECT’s model breaches, these HTTP connections were investigated by Cyber AI Analyst™. AI Analyst provided a summary and further technical details of these connections, as shown in figure 6.

Figure 6: Cyber AI Analyst incident showing a summary of the event, as well as technical details. The AI investigation process is also detailed

AI Analyst searched for all HTTP connections made by the breach device and found more than 2,500 requests to more than a hundred endpoints for one given device. It then looked for the user agents responsible for these connections and found 15 possible software agents responsible for the HTTP requests, and from these identified a single suspicious software agent, Microsoft-WebDAV-Min-Redir. As mentioned previously, this is a legitimate software, but its use by the breach device was considered unusual by Darktrace’s machine learning technology. By performing analysis on thousands of connections to hundreds of endpoints at machine speed, AI Analyst is able to perform the heavy lifting on behalf of human security teams and then collate its findings in a single summary pane, giving end-users the information needed to assess a given activity and quickly start remediation as needed. This allows security teams and administrators to save precious time and provides unparalleled visibility over any potentially malicious activity on their network.

Following the successful identification of CyberCartel activity by DETECT, Darktrace RESPOND™ is then able to contain suspicious behavior, such as by restricting outgoing traffic or enforcing normal patterns of life on affected devices. This would allow customer security teams extra time to analyze potentially malicious behavior, while leaving the rest of the network free to perform business critical operations. Unfortunately, in the cases of CyberCartel compromises detected by Darktrace, RESPOND was not enabled in autonomous response mode meaning preventative actions had to be applied manually by the customer’s security team after the fact.

Figure 7. Device event log showing connections to 100% rare CyberCartel endpoint 172.86.68[.]194 and subsequent suggested RESPOND actions.

Conclusion

Threat actors targeting high-value entities such as government offices and banks is unfortunately all too commonplace.  In the case of Cyber Cartel, governmental organizations and entities, as well as multiple newspapers in the Latin America, have cautioned users against these malicious campaigns, which have occurred over the past few years [8] [9]. However, attackers continuously update their toolsets and infrastructure, quickly rendering these warnings and known-bad security precautions obsolete. In the case of CyberCartel, the abuse of the legitimate WebDAV protocol to retrieve the initial payload is just one example of this. This method of distribution has also been leveraged by in Bumblebee malware loader’s latest campaign [10]. The abuse of the legitimate WebDAV protocol to retrieve the initial CyberCartel payload outlined in this case is one example among many of threat actors adopting new distribution methods used by others to further their ends.

As threat actors continue to search for new ways of remaining undetected, notably by incorporating legitimate processes into their attack flow and utilizing non-exclusive compromised infrastructure, it is more important than ever to have an understanding of normal network operation in order to detect anomalies that are indicative of an ongoing compromise. Darktrace’s suite of products, including DETECT+RESPOND, is well placed to do just that, with machine-speed analysis, detection, and response helping security teams and administrators keep their digital environments safe from malicious actors.

Credit to: Nahisha Nobregas, SOC Analyst

References

[1] https://darktrace.com/blog/darktrace-half-year-threat-report

[2] https://www.metabaseq.com/fenix-botnet/

[3] https://perception-point.io/blog/manipulated-caiman-the-sophisticated-snare-of-mexicos-banking-predators-technical-edition/

[4] https://www.virustotal.com/gui/ip-address/104.156.149.33/community

[5] https://silent4business.com/tendencias/1

[6] https://www.metabaseq.com/cybercartel/

[7] http://www.webdav.org/specs/rfc2518.html#rfc.section.4.1

[8] https://www.csirt.gob.cl/alertas/8ffr23-01415-01/

[9] https://www.gob.mx/sat/acciones-y-programas/sitios-web-falsos

[10] https://www.bleepingcomputer.com/news/security/bumblebee-malware-returns-in-new-attacks-abusing-webdav-folders/

Appendices  

Darktrace DETECT Model Detections

AI Analyst Incidents:

• Possible HTTP Command and Control

• Suspicious File Download

Model Detections:

• Anomalous Connection / New User Agent to IP Without Hostname

• Device / New User Agent and New IP

• Anomalous File / EXE from Rare External Location

• Multiple EXE from Rare External Locations

• Anomalous File / Script from Rare External Location

List of IoCs

IoC - Type - Description + Confidence

f84bb51de50f19ec803b484311053294fbb3b523 - SHA1 hash - Likely CyberCartel Payload IoCs

4eb564b84aac7a5a898af59ee27b1cb00c99a53d - SHA1 hash - Likely CyberCartel payload

8806639a781d0f63549711d3af0f937ffc87585c - SHA1 hash - Likely CyberCartel payload

9d58441d9d31b5c4011b99482afa210b030ecac4 - SHA1 hash - Possible CyberCartel payload

37da048533548c0ad87881e120b8cf2a77528413 - SHA1 hash - Likely CyberCartel payload

2415fcefaf86a83f1174fa50444be7ea830bb4d1 - SHA1 hash - Likely CyberCartel payload

15a94c7e9b356d0ff3bcee0f0ad885b6cf9c1bb7 - SHA1 hash - Likely CyberCartel payload

cdc5da48fca92329927d9dccf3ed513dd28956af - SHA1 hash - Possible CyberCartel payload

693b869bc9ba78d4f8d415eb7016c566ead839f3 - SHA1 hash - Likely CyberCartel payload

04ce764723eaa75e4ee36b3d5cba77a105383dc5 - SHA1 hash - Possible CyberCartel payload

435834167fd5092905ee084038eee54797f4d23e - SHA1 hash - Possible CyberCartel payload

3341b4f46c2f45b87f95168893a7485e35f825fe - SHA1 hash - Likely CyberCartel payload

f6375a1f954f317e16f24c94507d4b04200c63b9 - SHA1 hash - Likely CyberCartel payload

252efff7f54bd19a5c96bbce0bfaeeecadb3752f - SHA1 hash - Likely CyberCartel payload

8080c94e5add2f6ed20e9866a00f67996f0a61ae - SHA1 hash - Likely CyberCartel payload

c5117cedc275c9d403a533617117be7200a2ed77 - SHA1 hash - Possible CyberCartel payload

19dd866abdaf8bc3c518d1c1166fbf279787fc03 - SHA1 hash - Likely CyberCartel payload

548287c0350d6e3d0e5144e20d0f0ce28661f514 - SHA1 hash - Likely CyberCartel payload

f0478e88c8eefc3fd0a8e01eaeb2704a580f88e6 - SHA1 hash - Possible CyberCartel payload

a9809acef61ca173331e41b28d6abddb64c5f192 - SHA1 hash - Likely CyberCartel payload

be96ec94f8f143127962d7bf4131c228474cd6ac - SHA1 hash -Likely CyberCartel payload

44ef336395c41bf0cecae8b43be59170bed6759d - SHA1 hash - Possible CyberCartel payload

facturmx[.]info - Hostname - Likely CyberCartel infection source

consultar-rfc[.]online - Hostname - Possible CyberCartel infection source

srlxlpdfmxntetflx[.]com - Hostname - Likely CyberCartel infection source

facturmx[.]online - Hostname - Possible CyberCartel infection source

rfcconhomoclave[.]mx - Hostname - Possible CyberCartel infection source

situacionfiscal[.]online - Hostname - Likely CyberCartel infection source

descargafactura[.]club - Hostname - Likely CyberCartel infection source

104.156.149[.]33 - IP - Likely CyberCartel C2 endpoint

172.86.68[.]194 - IP - Likely CyberCartel C2 endpoint

139.162.73[.]58 - IP - Likely CyberCartel C2 endpoint

172.105.24[.]190 - IP - Possible CyberCartel C2 endpoint

MITRE ATT&CK Mapping

Tactic - Technique

Command and Control - Ingress Tool Transfer (T1105)

Command and Control - Web Protocols (T1071.001)

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst

More in this series

No items found.

Blog

/

/

April 24, 2025

The Importance of NDR in Resilient XDR

picture of hands typing on laptop Default blog imageDefault blog image

As threat actors become more adept at targeting and disabling EDR agents, relying solely on endpoint detection leaves critical blind spots.

Network detection and response (NDR) offers the visibility and resilience needed to catch what EDR can’t especially in environments with unmanaged devices or advanced threats that evade local controls.

This blog explores how threat actors can disable or bypass EDR-based XDR solutions and demonstrates how Darktrace’s approach to NDR closes the resulting security gaps with Self-Learning AI that enables autonomous, real-time detection and response.

Threat actors see local security agents as targets

Recent research by security firms has highlighted ‘EDR killers’: tools that deliberately target EDR agents to disable or damage them. These include the known malicious tool EDRKillShifter, the open source EDRSilencer, EDRSandblast and variants of Terminator, and even the legitimate business application HRSword.

The attack surface of any endpoint agent is inevitably large, whether the software is challenged directly, by contesting its local visibility and access mechanisms, or by targeting the Operating System it relies upon. Additionally, threat actors can readily access and analyze EDR tools, and due to their uniformity across environments an exploit proven in a lab setting will likely succeed elsewhere.

Sophos have performed deep research into the EDRShiftKiller tool, which ESET have separately shown became accessible to multiple threat actor groups. Cisco Talos have reported via TheRegister observing significant success rates when an EDR kill was attempted by ransomware actors.

With the local EDR agent silently disabled or evaded, how will the threat be discovered?

What are the limitations of relying solely on EDR?

Cyber attackers will inevitably break through boundary defences, through innovation or trickery or exploiting zero-days. Preventive measures can reduce but not completely stop this. The attackers will always then want to expand beyond their initial access point to achieve persistence and discover and reach high value targets within the business. This is the primary domain of network activity monitoring and NDR, which includes responsibility for securing the many devices that cannot run endpoint agents.

In the insights from a CISA Red Team assessment of a US CNI organization, the Red Team was able to maintain access over the course of months and achieve their target outcomes. The top lesson learned in the report was:

“The assessed organization had insufficient technical controls to prevent and detect malicious activity. The organization relied too heavily on host-based endpoint detection and response (EDR) solutions and did not implement sufficient network layer protections.”

This proves that partial, isolated viewpoints are not sufficient to track and analyze what is fundamentally a connected problem – and without the added visibility and detection capabilities of NDR, any downstream SIEM or MDR services also still have nothing to work with.

Why is network detection & response (NDR) critical?

An effective NDR finds threats that disable or can’t be seen by local security agents and generally operates out-of-band, acquiring data from infrastructure such as traffic mirroring from physical or virtual switches. This means that the security system is extremely inaccessible to a threat actor at any stage.

An advanced NDR such as Darktrace / NETWORK is fully capable of detecting even high-end novel and unknown threats.

Detecting exploitation of Ivanti CS/PS with Darktrace / NETWORK

On January 9th 2025, two new vulnerabilities were disclosed in Ivanti Connect Secure and Policy Secure appliances that were under malicious exploitation. Perimeter devices, like Ivanti VPNs, are designed to keep threat actors out of a network, so it's quite serious when these devices are vulnerable.

An NDR solution is critical because it provides network-wide visibility for detecting lateral movement and threats that an EDR might miss, such as identifying command and control sessions (C2) and data exfiltration, even when hidden within encrypted traffic and which an EDR alone may not detect.

Darktrace initially detected suspicious activity connected with the exploitation of CVE-2025-0282 on December 29, 2024 – 11 days before the public disclosure of the vulnerability, this early detection highlights the benefits of an anomaly-based network detection method.

Throughout the campaign and based on the network telemetry available to Darktrace, a wide range of malicious activities were identified, including the malicious use of administrative credentials, the download of suspicious files, and network scanning in the cases investigated.

Darktrace / NETWORK’s autonomous response capabilities played a critical role in containment by autonomously blocking suspicious connections and enforcing normal behavior patterns. At the same time, Darktrace Cyber AI Analyst™ automatically investigated and correlated the anomalous activity into cohesive incidents, revealing the full scope of the compromise.

This case highlights the importance of real-time, AI-driven network monitoring to detect and disrupt stealthy post-exploitation techniques targeting unmanaged or unprotected systems.

Unlocking adaptive protection for evolving cyber risks

Darktrace / NETWORK uses unique AI engines that learn what is normal behavior for an organization’s entire network, continuously analyzing, mapping and modeling every connection to create a full picture of your devices, identities, connections, and potential attack paths.

With its ability to uncover previously unknown threats as well as detect known threats using signatures and threat intelligence, Darktrace is an essential layer of the security stack. Darktrace has helped secure customers against attacks including 2024 threat actor campaigns against Fortinet’s FortiManager , Palo Alto firewall devices, and more.  

Stay tuned for part II of this series which dives deeper into the differences between NDR types.

Credit to Nathaniel Jones VP, Security & AI Strategy, FCISO & Ashanka Iddya, Senior Director of Product Marketing for their contribution to this blog.

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

April 22, 2025

Obfuscation Overdrive: Next-Gen Cryptojacking with Layers

man looking at multiple computer screensDefault blog imageDefault blog image

Out of all the services honeypotted by Darktrace, Docker is the most commonly attacked, with new strains of malware emerging daily. This blog will analyze a novel malware campaign with a unique obfuscation technique and a new cryptojacking technique.

What is obfuscation?

Obfuscation is a common technique employed by threat actors to prevent signature-based detection of their code, and to make analysis more difficult. This novel campaign uses an interesting technique of obfuscating its payload.

Docker image analysis

The attack begins with a request to launch a container from Docker Hub, specifically the kazutod/tene:ten image. Using Docker Hub’s layer viewer, an analyst can quickly identify what the container is designed to do. In this case, the container is designed to run the ten.py script which is built into itself.

 Docker Hub Image Layers, referencing the script ten.py.
Figure 1: Docker Hub Image Layers, referencing the script ten.py.

To gain more information on the Python file, Docker’s built in tooling can be used to download the image (docker pull kazutod/tene:ten) and then save it into a format that is easier to work with (docker image save kazutod/tene:ten -o tene.tar). It can then be extracted as a regular tar file for further investigation.

Extraction of the resulting tar file.
Figure 2: Extraction of the resulting tar file.

The Docker image uses the OCI format, which is a little different to a regular file system. Instead of having a static folder of files, the image consists of layers. Indeed, when running the file command over the sha256 directory, each layer is shown as a tar file, along with a JSON metadata file.

Output of the file command over the sha256 directory.
Figure 3: Output of the file command over the sha256 directory.

As the detailed layers are not necessary for analysis, a single command can be used to extract all of them into a single directory, recreating what the container file system would look like:

find blobs/sha256 -type f -exec sh -c 'file "{}" | grep -q "tar archive" && tar -xf "{}" -C root_dir' \;

Result of running the command above.
Figure 4: Result of running the command above.

The find command can then be used to quickly locate where the ten.py script is.

find root_dir -name ten.py

root_dir/app/ten.py

Details of the above ten.py script.
Figure 5: Details of the above ten.py script.

This may look complicated at first glance, however after breaking it down, it is fairly simple. The script defines a lambda function (effectively a variable that contains executable code) and runs zlib decompress on the output of base64 decode, which is run on the reversed input. The script then runs the lambda function with an input of the base64 string, and then passes it to exec, which runs the decoded string as Python code.

To help illustrate this, the code can be cleaned up to this simplified function:

def decode(input):
   reversed = input[::-1]

   decoded = base64.decode(reversed)
   decompressed = zlib.decompress(decoded)
   return decompressed

decoded_string = decode(the_big_text_blob)
exec(decoded_string) # run the decoded string

This can then be set up as a recipe in Cyberchef, an online tool for data manipulation, to decode it.

Use of Cyberchef to decode the ten.py script.
Figure 6: Use of Cyberchef to decode the ten.py script.

The decoded payload calls the decode function again and puts the output into exec. Copy and pasting the new payload into the input shows that it does this another time. Instead of copy-pasting the output into the input all day, a quick script can be used to decode this.

The script below uses the decode function from earlier in order to decode the base64 data and then uses some simple string manipulation to get to the next payload. The script will run this over and over until something interesting happens.

# Decode the initial base64

decoded = decode(initial)
# Remove the first 11 characters and last 3

# so we just have the next base64 string

clamped = decoded[11:-3]

for i in range(1, 100):
   # Decode the new payload

   decoded = decode(clamped)
   # Print it with the current step so we

   # can see what’s going on

   print(f"Step {i}")

   print(decoded)
   # Fetch the next base64 string from the

   # output, so the next loop iteration will

   # decode it

   clamped = decoded[11:-3]

Result of the 63rd iteration of this script.
Figure 7: Result of the 63rd iteration of this script.

After 63 iterations, the script returns actual code, accompanied by an error from the decode function as a stopping condition was never defined. It not clear what the attacker’s motive to perform so many layers of obfuscation was, as one round of obfuscation versus several likely would not make any meaningful difference to bypassing signature analysis. It’s possible this is an attempt to stop analysts or other hackers from reverse engineering the code. However,  it took a matter of minutes to thwart their efforts.

Cryptojacking 2.0?

Cleaned up version of the de-obfuscated code.
Figure 8: Cleaned up version of the de-obfuscated code.

The cleaned up code indicates that the malware attempts to set up a connection to teneo[.]pro, which appears to belong to a Web3 startup company.

Teneo appears to be a legitimate company, with Crunchbase reporting that they have raised USD 3 million as part of their seed round [1]. Their service allows users to join a decentralized network, to “make sure their data benefits you” [2]. Practically, their node functions as a distributed social media scraper. In exchange for doing so, users are rewarded with “Teneo Points”, which are a private crypto token.

The malware script simply connects to the websocket and sends keep-alive pings in order to gain more points from Teneo and does not do any actual scraping. Based on the website, most of the rewards are gated behind the number of heartbeats performed, which is likely why this works [2].

Checking out the attacker’s dockerhub profile, this sort of attack seems to be their modus operandi. The most recent container runs an instance of the nexus network client, which is a project to perform distributed zero-knowledge compute tasks in exchange for cryptocurrency.

Typically, traditional cryptojacking attacks rely on using XMRig to directly mine cryptocurrency, however as XMRig is highly detected, attackers are shifting to alternative methods of generating crypto. Whether this is more profitable remains to be seen. There is not currently an easy way to determine the earnings of the attackers due to the more “closed” nature of the private tokens. Translating a user ID to a wallet address does not appear to be possible, and there is limited public information about the tokens themselves. For example, the Teneo token is listed as “preview only” on CoinGecko, with no price information available.

Conclusion

This blog explores an example of Python obfuscation and how to unravel it. Obfuscation remains a ubiquitous technique employed by the majority of malware to aid in detection/defense evasion and being able to de-obfuscate code is an important skill for analysts to possess.

We have also seen this new avenue of cryptominers being deployed, demonstrating that attackers’ techniques are still evolving - even tried and tested fields. The illegitimate use of legitimate tools to obtain rewards is an increasingly common vector. For example,  as has been previously documented, 9hits has been used maliciously to earn rewards for the attack in a similar fashion.

Docker remains a highly targeted service, and system administrators need to take steps to ensure it is secure. In general, Docker should never be exposed to the wider internet unless absolutely necessary, and if it is necessary both authentication and firewalling should be employed to ensure only authorized users are able to access the service. Attacks happen every minute, and even leaving the service open for a short period of time may result in a serious compromise.

References

1. https://www.crunchbase.com/funding_round/teneo-protocol-seed--a8ff2ad4

2. https://teneo.pro/

Continue reading
About the author
Nate Bill
Threat Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI