Blog
/
/
March 18, 2020

5 Security Risks Companies Face Transitioning to Remote Work

Discover 5 security risks companies face with remote work employees. Protect against email scams, weakened security controls, errors, and insider threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Andrew Tsonchev
VP, Security & AI Strategy, Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
18
Mar 2020

As we all adjust to working remotely, security teams across the world are grappling with a very serious challenge. Almost overnight our companies have changed. Well established procedures are being rewritten, best practices quickly rethought, and policies stretched to breaking point.

Business transformation is always a security risk. New technology and working practices need new security measures; but normally this risk is managed carefully, and over time. COVID-19 has not afforded us that luxury. For some businesses the scale and speed of this change will be unprecedented. It is also very public; attackers are aware of the situation and already exploiting it. Below are some of the most serious threats that security teams will face over the coming weeks.

1. Email scams

Change brings novelty, and novelty brings opportunity for scammers. In the last 48 hours, internal security teams will have been racing to roll out essential remote working tools. Links to download new software, changes to how we authenticate services. When you do not know what to expect, employee training on spotting social engineering goes out the window. Both employees and IT departments should be wary of unexpected calls and requests:

“Hi, I’m calling from IT, can you please read out your 2FA code to me to confirm that you have been transitioned to the new Duo system?”

“Hi, I’ve forgotten my O365 password, can you please email a reset code to my personal Gmail?”

Such requests may be legitimate and may need to be resolved outside normal channels. The onus will be on individuals to be cautious, apply common sense and validate as appropriate.

There will also be ample opportunity for spear phishers to impersonate third-parties and clients:

“Hi John, I need to reschedule our meeting next week to be remote. Please see the link below for an invite to the Zoom call.”

These risks will be exacerbated by the simultaneous relaxing of security controls in order to facilitate the use of non-standard web conferencing software and the sharing of files by email. Attackers will have both the opportunity and the means.

2. Weakened security controls

The weakening of security controls goes far beyond relaxing firewall rules and email policy. Many existing layers of security will not apply to remote workers. Employees suddenly taking their work computer home with them will find themselves stripped of protection as they trade the office network for their home Wi-Fi. Without internet proxy, NAC, IDS and NGFW, client devices will now be sitting exposed on potentially unsecured networks amongst potentially compromised devices. Endpoint security will have to bear the full brunt of protection.

Internal network security may be compromised as well; employees might need access to resources previously only accessible on a wired network in one location. To make it reachable over VPN, internal segmentation might need to be flattened. This will open the door to malware spread and lateral movement. Client certificate authentication protecting web services might need to be turned off to enable BYOD working for employees that don’t have a company laptop.

These changes must be scrupulously logged, and dependencies understood. The extra weight will have to be carried elsewhere: perhaps host AV policies can be tightened to compensate for lack of network protection, perhaps employee devices can be reconfigured to use a secure external DNS provider instead of the on-prem DNS server.

3. Attacks on remote-working infrastructure

Beyond the weakening of existing controls, spinning up new infrastructure will bring fresh risks. In January we saw a spate of attacks on web-facing Citrix infrastructure. Companies will be rapidly deploying VPN gateways, transitioning to Sharepoint and expanding their internet-facing perimeter. This rapidly increased attack surface will need monitoring and protecting. Security teams should be on heightened alert for brute force and server-side attacks. DDoS protection will also become more important than ever; for many companies this will be the first time that a DDoS attack could cripple their business by preventing remote workers from accessing services over the internet. We should expect to see a sharp rise in both of these forms of attack immediately.

4. Errors and creative solutions

“Put it in an S3 bucket.”

“Let’s use join.me instead.”

“I’ll send it to you over WeTransfer.”

Both IT, and individual employees, will face blockers. There won’t be an authorized solution for their needs, and those needs may well be extremely urgent. At a time when businesses are extremely worried about their financial position and ability to operate, there will be pressure to throw caution to the wind and protect ‘business as usual’. This pressure may even come from the top. Security leadership must do the best they can to both push back against rash decisions and provide creative solutions.

Well-meaning employees will get creative, and responsibility will be delegated to team leaders to “do what it takes”. It may be impossible for security to police this centrally but monitoring vigilance will be required to spot risky behavior and non-compliance. This is easier said than done; the SOC will be asked to monitor for incidents in a sea of change. Existing use-cases and rules will not apply, and companies will need a more proactive and dynamic approach to detection and response.

5. Malicious insiders and malicious housemates

Unfortunately, there will be some within our companies that want to kick us while we are down. Sudden remote working is a godsend to malicious insiders. Data can now be easily taken from a company device over USB within the privacy of their own home. Security monitoring may be crippled or disabled entirely. This risk is harder to address. It may not be eliminable, but it can be balanced against the need for productivity and access to data.

We should also be wary of those around us. We all hope we can trust the people we live with. But from a company perspective, employee homes are zero-trust environments. Confidential conversations will now be conducted within range of eavesdroppers. Intellectual property will be visible on screens and monitors in living rooms around the world. This risk is greater for younger demographics likely to be house-sharing, but it remains for all workers; delivery personnel, visitors to the house – they could all potentially steal a company laptop from the kitchen room table. Education of employees in particular risk groups will be key.

Finding direction in a sea of digital change

All of the above changes and risks create a monitoring nightmare for SOCs. We are entering into a period of digital unknown, where change will be the new normal. Data flows and topology will change. New technology and services will be deployed. Logging formats will be different. The SIEM use-cases that took 12 months to develop will need to be scrapped overnight. For the next few weeks, business practice will shift rapidly.

Static defenses and rules will not be able to keep up, no matter how diligently and rapidly we rewrite them. How will you spot a malicious login attempt to O365 in your audit logs now that connections are coming from thousands of different locations around the world? Companies need to leverage technology that can allow them to continue to operate amidst uncertainty without choking productivity at this critical time. More critical still, containing those threats is of paramount importance – it won’t be feasible to entirely quarantine an infected machine if it cannot be re-imaged or replaced for days.

AI systems that can continuously evolve and adapt to change will provide the best chance of detecting misconfigurations, attacks, and risky behavior – when you don’t know what to look for, you need technology that is able to identify patterns and quantify risks for you. Autonomous Response technology can also surgically intervene to halt malicious activity when teams can’t be there to stop it, protecting devices and systems whilst allowing essential operations to continue unaffected.

Evolutions: Meeting the challenge head-on

Confronting these threats will not be easy. It will require a mixture of hard work, creativity, and new technology, alongside an openness to new ways of working and a willingness to embrace dynamic, proactive defense, instead of traditional rigid policies. However, placing trust in defensive systems to autonomously protect employees will be the single most effective way of maintaining resilience and security when our static defenses have failed us.

At Darktrace we are working hard to help our customers get even more value from their Cyber AI platform throughout this difficult time, and ease workloads of busy security teams. We know that with the right tools and technologies – from Autonomous Response and Cyber AI Analyst, through to the Darktrace Mobile App – these teams will be able to navigate these stormy waters. In this unprecedented period of uncertainty, the need for security that evolves in step with your changing digital business has never been greater.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Andrew Tsonchev
VP, Security & AI Strategy, Field CISO

More in this series

No items found.

Blog

/

Identity

/

July 3, 2025

Top Eight Threats to SaaS Security and How to Combat Them

Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Proactive Security

/

July 2, 2025

Pre-CVE Threat Detection: 10 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability

Default blog imageDefault blog image

Vulnerabilities are weaknesses in a system that can be exploited by malicious actors to gain unauthorized access or to disrupt normal operations. Common Vulnerabilities and Exposures (or CVEs) are a list of publicly disclosed cybersecurity vulnerabilities that can be tracked and mitigated by the security community.

When a vulnerability is discovered, the standard practice is to report it to the vendor or the responsible organization, allowing them to develop and distribute a patch or fix before the details are made public. This is known as responsible disclosure.

With a record-breaking 40,000 CVEs reported for 2024 and a predicted higher number for 2025 by the Forum for Incident Response and Security Teams (FIRST) [1], anomaly-detection is essential for identifying these potential risks. The gap between exploitation of a zero-day and disclosure of the vulnerability can sometimes be considerable, and retroactively attempting to identify successful exploitation on your network can be challenging, particularly if taking a signature-based approach.

Detecting threats without relying on CVE disclosure

Abnormal behaviors in networks or systems, such as unusual login patterns or data transfers, can indicate attempted cyber-attacks, insider threats, or compromised systems. Since Darktrace does not rely on rules or signatures, it can detect malicious activity that is anomalous even without full context of the specific device or asset in question.

For example, during the Fortinet exploitation late last year, the Darktrace Threat Research team were investigating a different Fortinet vulnerability, namely CVE 2024-23113, for exploitation when Mandiant released a security advisory around CVE 2024-47575, which aligned closely with Darktrace’s findings.

Retrospective analysis like this is used by Darktrace’s threat researchers to better understand detections across the threat landscape and to add additional context.

Below are ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

Trends in pre-cve exploitation

Often, the disclosure of an exploited vulnerability can be off the back of an incident response investigation related to a compromise by an advanced threat actor using a zero-day. Once the vulnerability is registered and publicly disclosed as having been exploited, it can kick off a race between the attacker and defender: attack vs patch.

Nation-state actors, highly skilled with significant resources, are known to use a range of capabilities to achieve their target, including zero-day use. Often, pre-CVE activity is “low and slow”, last for months with high operational security. After CVE disclosure, the barriers to entry lower, allowing less skilled and less resourced attackers, like some ransomware gangs, to exploit the vulnerability and cause harm. This is why two distinct types of activity are often seen: pre and post disclosure of an exploited vulnerability.

Darktrace saw this consistent story line play out during several of the Fortinet and PAN OS threat actor campaigns highlighted above last year, where nation-state actors were seen exploiting vulnerabilities first, followed by ransomware gangs impacting organizations [2].

The same applies with the recent SAP Netweaver exploitations being tied to a China based threat actor earlier this spring with subsequent ransomware incidents being observed [3].

Autonomous Response

Anomaly-based detection offers the benefit of identifying malicious activity even before a CVE is disclosed; however, security teams still need to quickly contain and isolate the activity.

For example, during the Ivanti chaining exploitation in the early part of 2025, a customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device.

This pre-CVE detection and response by Darktrace occurred 11 days before any public disclosure, demonstrating the value of an anomaly-based approach.

In some cases, customers have even reported that Darktrace stopped malicious exploitation of devices several days before a public disclosure of a vulnerability.

For example, During the ConnectWise exploitation, a customer informed the team that Darktrace had detected malicious software being installed via remote access. Upon further investigation, four servers were found to be impacted, while Autonomous Response had blocked outbound connections and enforced patterns of life on impacted devices.

Conclusion

By continuously analyzing behavioral patterns, systems can spot unusual activities and patterns from users, systems, and networks to detect anomalies that could signify a security breach.

Through ongoing monitoring and learning from these behaviors, anomaly-based security systems can detect threats that traditional signature-based solutions might miss, while also providing detailed insights into threat tactics, techniques, and procedures (TTPs). This type of behavioral intelligence supports pre-CVE detection, allows for a more adaptive security posture, and enables systems to evolve with the ever-changing threat landscape.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO), Emma Fougler (Global Threat Research Operations Lead), Ryan Traill (Analyst Content Lead)

References and further reading:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

Related Darktrace blogs:

*Self-reported by customer, confirmed afterwards.

**Updated January 2024 blog now reflects current findings

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
Your data. Our AI.
Elevate your network security with Darktrace AI