Blog
/
/
December 7, 2017

Darktrace: Investigating Widespread Trojan Infections

Discover how Darktrace expedites the investigation of widespread Trojan infections, enhancing cybersecurity and response times.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Dec 2017

This blog post outlines how Darktrace helps security operations centre (SOC) teams become more efficient by drastically cutting down the time needed to investigate incidents. This is illustrated by an example encountered in a recent Proof of Value where over 350 client devices had been infected by a stealthy banking trojan.

Identifying and investigating a compromise of this size would usually take a SOC team several hours if not days using disparate traditional security tools. Employing Darktrace, the most important questions were answered within 90 minutes. The main reason for this is that Darktrace provides full visibility and context into network activity for all devices monitored on a single, unified platform.

Alert fatigue & the cyber security skill gap

Getting cyber security right is difficult and time-consuming. Complexity is one of the main challenges the cyber security community is facing. These days, networks are only vaguely defined with digital supply chains, outsourcing, the push into the cloud and the advent of micro-virtualisation like Docker. The amount of data stored, devices connected to internal networks, connections made by devices and the heterogeneity in IT adds to this complexity. Managing it is difficult at best and securing it with traditional tools can be a daunting task.

Our industry is struggling with what has been labelled the ‘cyber security skill gap’. The demand for skilled, experienced security practitioners consistently outstrips supply. SOC teams struggle to find the right people for the job and to keep their analysts motivated in the face of a rapidly evolving threat landscape. Alert fatigue and burnout are common symptoms for SOC analysts working long hours and graveyard shifts.

Investigation methodology

Any incident responder will always begin by asking some high-level questions concerning the incident under investigation – regardless of it being an adware infection, a banking trojan, ransomware, an active intrusion or any other form of cyber security incident.

The most important questions usually are:

  • How did the infection occur? (To prevent the same initial infection vector in the future)
  • What behavior is the infected device exhibiting? (To understand the threat and the risk of the infection)
  • What Indicators of Compromise (IoC) are seen? (To update other security tools and to use for further investigation)
  • Are other devices infected as well? (To assess the extent of the infection)

We did a recent Proof of Value with an IT service provider in EMEA. Darktrace entered an environment which had already succumbed to a widespread compromise – over 350 client devices had been infected with banking trojans. Let’s walk through how we identified, triaged and investigated this infection using Darktrace.

Identifying the incident

Darktrace came into the environment after the initial infection had taken place already. Darktrace instantly identified several devices exhibiting unexpected HTTP beaconing to unusual, rare external IP addresses. The devices made HTTP POST requests without prior GET requests along other suspicious behavior. Darktrace created several high-severity alerts for this, e.g. ‘Compromise / Suspicious HTTP Beacons to Dotted Quad’ and ‘Compromise / Possible Malware HTTP Comms’:

Figure 1: Example Darktrace alert.

Triaging the incident

Darktrace then provides context around this alert - e.g. the external IP the beaconing was made to, the internal device including the associated user, and the suspicious behavior:

Figure 2: Detection context and C2 IP.

A quick investigation of the external IP reveals that it is a recently discovered command and control (C2) IP address for the Dridex banking trojan.

Drilling deeper into this, Darktrace provides PCAPs for every connection seen. A PCAP for the C2 connection above confirms this incident as active, successful, encoded beaconing to a malicious C2 IP:

Figure 3: PCAP and encoded HTTP POSTs.

Investigating the incident

At this stage, we want to further examine the behavior of the infected device around the time of the incident. Darktrace provides full visibility into past activity, including all network connection made by any device - regardless of whether the incident occurred on the device or not.

We attend to all external connections made by the infected device around the time of the incident and immediately identify more suspicious C2 communication:

Figure 4: More device behavior; further C2 IPs.

By now we have identified 6 different C2 IP addresses.

We can use Darktrace’s ‘External Sites Summary’ to view all devices that have connected to a specific IP or domain in the recent past. Doing this for the initial C2 IP yields the following result (excerpt):

Figure 5: External Sites Summary; further infections.

We immediately identify 5 additional devices that made successful connections to the C2 IP address. In fact, the list above is abridged as we actually saw over 350 devices connecting to this and other C2 IP addresses. Notably, all observed devices appear to have a similar naming structure - this will become important in the next part of the analysis.

At this point we have answered all but the first question: ‘How did the infection occur?’

Darktrace started monitoring the network after the initial infection occurred and spread. Further research into the C2 IP addresses shows that they are associated with the Emotet trojan. This sophisticated malware often precedes banking trojan (e.g. Dridex) infections and is spread via phishing. We can thus assume that phishing was a likely initial infection vector.

How then did the infection manage to spread to so many devices?

Surely not all users clicked on suspicious phishing emails? Recent versions of Emotet have limited lateral movement capabilities. They mainly propagate via SMB brute forcing - trying administrative accounts and hard-coded password lists. The naming convention on the infected devices is very similar - this could indicate a similar build-process and setup of the devices. If a vulnerability - such as an administrative account with a weak password - existed on one of the devices, it might be present in all of the devices with a similar build.

Using Darktrace, the security team has now a solid understanding of the nature and size of the infection, the IoCs available to update firewalls and other preventive security controls and outstanding remediation-activities.

What would this investigation look like with traditional tools, not using Darktrace?

Detecting these covert banking trojans in the first place, let alone triaging them fully, can be a difficult challenge in itself. Current banking Trojan strains such as Dridex, Fedeo or Vawtrak keep updating the malware with new C2 addresses to avoid blacklisting. Initial detection could be at any stage of the attack lifecycle – likely it will be in the latter stages though, when considerable damage has already been done.

An analyst will have to log into various security devices to get close to the same level of visibility provided in Darktrace – web proxy logs, anti-virus logs, running PCAPs on infected hosts, SIEM logs. Having to switch between all those disparate security tools is not time-efficient and produces a fragmentary picture of what actually transpired.

Conclusion

A working hypothesis is that a single device was initially infected via phishing, allowing Emotet to spread to over 350 internal devices via SMB brute forcing. It took no longer than 90 minutes to come from an initial detection of the incident to this conclusion, which forms the basis for an actionable report.

The last thing a SOC needs is yet another tool producing a profusion of alerts. Using Darktrace’s machine learning and unrivalled network visibility, you can focus on the small set of relevant alerts and rapidly investigate those incidents according to their severity and priority.

Darktrace can reduce costs even if you bring in a third-party incident response team. You will be able to significantly speed up their ongoing investigation if they have access to Darktrace. Third-party incident response teams are expensive – their daily rates ranging between £2,000 and £3,000 per day. Cutting their work down from days to hours will result in cost and efforts saved.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Cloud

/

June 12, 2025

Breaking Silos: Why Unified Security is Critical in Hybrid World

laptop with statistics on itDefault blog imageDefault blog image

Hybrid environments demand end-to-end visibility to stop modern attacks

Hybrid environments are a dominant trend in enterprise technology, but they continue to present unique issues to the defenders tasked with securing them. By 2026, Gartner predicts that 75% of organizations will adopt hybrid cloud strategies [1]. At the same time, only 23% of organizations report full visibility across cloud environments [2].

That means a strong majority of organizations do not have comprehensive visibility across both their on-premises and cloud networks. As a result, organizations are facing major challenges in achieving visibility and security in hybrid environments. These silos and fragmented security postures become a major problem when considering how attacks can move between different domains, exploiting the gaps.

For example, an attack may start with a phishing email, leading to the compromise of a cloud-based application identity and then moving between the cloud and network to exfiltrate data. Some attack types inherently involve multiple domains, like lateral movement and supply chain attacks, which target both on-premises and cloud networks.

Given this, unified visibility is essential for security teams to reduce blind spots and detect threats across the entire attack surface.

Risks of fragmented visibility

Silos arise due to separate teams and tools managing on-premises and cloud environments. Many teams have a hand in cloud security, with some common ones including security, infrastructure, DevOps, compliance, and end users, and these teams can all use different tools. This fragmentation increases the likelihood of inconsistent policies, duplicate alerts, and missed threats. And that’s just within the cloud, not even considering the additional defenses involved with network security.

Without a unified security strategy, gaps between these infrastructures and the teams which manage them can leave organizations vulnerable to cyber-attacks. The lack of visibility between on-premises and cloud environments contributes to missed threats and delayed incident response. In fact, breaches involving stolen or compromised credentials take an average of 292 to identify and contain [3]. That’s almost ten months.

The risk of fragmented visibility runs especially high as companies undergo cloud migrations. As organizations transition to cloud environments, they still have much of their data in on-premises networks, meaning that maintaining visibility across both on-premises and cloud environments is essential for securing critical assets and ensuring seamless operations.

Unified visibility is the solution

Unified visibility is achieved by having a single-pane-of-glass view to monitor both on-premises and cloud environments. This type of view brings many benefits, including streamlined detection, faster response times, and reduced complexity.

This can only be accomplished through integrations or interactions between the teams and tools involved with both on-premises security and cloud security.

AI-driven platforms, like Darktrace, are especially well equipped to enable the real-time monitoring and insights needed to sustain unified visibility. This is because they can handle the large amounts of data and data types.

Darktrace accomplishes this by plugging into an organization’s infrastructure so the AI can ingest and analyze data and its interactions within the environment to form an understanding of the organization’s normal behavior, right down to the granular details of specific users and devices. The system continually revises its understanding about what is normal based on evolving evidence.

This dynamic understanding of normal means that the AI engine can identify, with a high degree of precision, events or behaviors that are both anomalous and unlikely to be benign. This helps reduce noise while surfacing real threats, across cloud and on-prem environments without manual tuning.

In this way, given its versatile AI-based, platform approach, Darktrace empowers security teams with real-time monitoring and insights across both the network and cloud.

Unified visibility in the modern threat landscape

As part of the Darktrace ActiveAI Security Platform™, Darktrace / CLOUD works continuously across public, private, hybrid, and multi-cloud deployments. With real-time Cloud Asset Enumeration and Dynamic Architecture Modeling, Darktrace / CLOUD generates up-to-date architecture diagrams, giving SecOps and DevOps teams a unified view of cloud infrastructures.

It is always on the lookout for changes, driven by user and service activity. For example, unusual user activity can significantly raise the asset’s score, prompting Darktrace’s AI to update its architectural view and keep a living record of the cloud’s ever-changing landscape, providing near real-time insights into what’s happening.

This continuous architectural awareness ensures that security teams have a real-time understanding of cloud behavior and not just a static snapshot.

Darktrace / CLOUD’s unified view of AWS and Azure cloud posture and compliance over time.
Figure 1. Darktrace / CLOUD’s unified view of AWS and Azure cloud posture and compliance over time.

With this dynamic cloud visibility and monitoring, Darktrace / CLOUD can help unify and secure environments.

Real world example: Remote access supply chain attacks

Sectop Remote Access Trojan (RAT) malware, also known as ‘ArchClient2,’ is a .NET RAT that contains information stealing capabilities and allows threat actors to monitor and control targeted computers. It is commonly distributed through drive-by downloads of illegitimate software via malvertizing.

Darktrace has been able to detect and respond to Sectop RAT attacks using unified visibility and platform-wide coverage. In one such example, Darktrace observed one device making various suspicious connections to unusual endpoints, likely in an attempt to receive C2 information, perform beaconing activity, and exfiltrate data to the cloud.

This type of supply chain attack can jump from the network to the cloud, so a unified view of both environments helps shorten detection and response times, therefore mitigating potential impact. Darktrace’s ability to detect these cross-domain behaviors stems from its AI-driven, platform-native visibility.

Conclusion

Organizations need unified visibility to secure complex, hybrid environments effectively against threats and attacks. To achieve this type of comprehensive visibility, the gaps between legacy security tools across on-premises and cloud networks can be bridged with platform tools that use AI to boost data analysis for highly accurate behavioral prediction and anomaly detection.

Read more about the latest trends in cloud security in the blog “Protecting Your Hybrid Cloud: The Future of Cloud Security in 2025 and Beyond.”

References:

1. Gartner, May 22, 2023, “10 Strategic Data and Analytics Predictions Through 2028

2. Cloud Security Alliance, February 14, 2024, “Cloud Security Alliance Survey Finds 77% of Respondents Feel Unprepared to Deal with Security Threats

3. IBM, “Cost of a Data Breach Report 2024

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance

Blog

/

OT

/

June 11, 2025

Proactive OT security: Lessons on supply chain risk management from a rogue Raspberry Pi

man working on computerDefault blog imageDefault blog image

Understanding supply chain risk in manufacturing

For industries running Industrial Control Systems (ICS) such as manufacturing and fast-moving consumer goods (FMCG), complex supply chains mean that disruption to one weak node can have serious impacts to the entire ecosystem. However, supply chain risk does not always originate from outside an organization’s ICS network.  

The implicit trust placed on software or shared services for maintenance within an ICS can be considered a type of insider threat [1], where defenders also need to look ‘from within’ to protect against supply chain risk. Attackers have frequently mobilised this form of insider threat:

  • Many ICS and SCADA systems were compromised during the 2014 Havex Watering Hole attack, where via operators’ implicit trust in the trojanized versions of legitimate applications, on legitimate but compromised websites [2].
  • In 2018, the world’s largest manufacturer of semiconductors and processers shut down production for three days after a supplier installed tainted software that spread to over 10,000 machines in the manufacturer’s network [3].
  • During the 2020 SolarWinds supply chain attack, attackers compromised a version of Orion software that was deployed from SolarWinds’ own servers during a software update to thousands of customers, including tech manufacturing companies such as Intel and Nvidia [4].

Traditional approaches to ICS security have focused on defending against everything from outside the castle walls, or outside of the ICS network. As ICS attacks become more sophisticated, defenders must not solely rely on static perimeter defenses and prevention. 

A critical part of active defense is understanding the ICS environment and how it operates, including all possible attack paths to the ICS including network connections, remote access points, the movement of data across zones and conduits and access from mobile devices. For instance, original equipment manufacturers (OEMs) and vendors often install remote access software or third-party equipment in ICS networks to facilitate legitimate maintenance and support activities, which can unintentionally expand the ICS’ attack surface.  

This blog describes an example of the convergence between supply chain risk and insider risk, when a vendor left a Raspberry Pi device in a manufacturing customer’s ICS network without the customer’s knowledge.

Case study: Using unsupervised machine learning to detect pre-existing security issues

Raspberry Pi devices are commonly used in SCADA environments as low-cost, remotely accessible data collectors [5][6][7]. They are often paired with Industrial Internet of Things (IIoT) for monitoring and tracking [8]. However, these devices also represent a security risk because their small physical size and time-consuming nature of physical inspection makes them easy to overlook. This poses a security risk, as these devices have previously been used to carry out USB-based attacks or to emulate Ethernet-over-USB connections to exfiltrate sensitive data [8][9].

In this incident, a Darktrace customer was unaware that their supplier had installed a Raspberry Pi device on their ICS network. Crucially, the installation occurred prior to Darktrace’s deployment on the customer’s network. 

For other anomaly detection tools, this order of events meant that this third-party device would likely have been treated as part of the customer’s existing infrastructure. However, after Darktrace was deployed, it analyzed the metadata from the encrypted HTTPS and DNS connections that the Raspberry Pi made to ‘call home’ to the supplier and determined that these connections were  unusual compared to the rest of the devices in the network, even in the absence of any malicious indicators of compromise (IoCs).  

Darktrace triggered the following alerts for this unusual activity that consequently notified the customer to the pre-existing threat of an unmanaged device already present in their network:

  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Agent Beacon (Short Period)
  • Compromise / Agent Beacon (Medium Period)
  • Compromise / Agent Beacon (Long Period)
  • Tags / New Raspberry Pi Device
  • Device / DNS Requests to Unusual Server
  • Device / Anomaly Indicators / Spike in Connections to Rare Endpoint Indicator
Darktrace’s External Sites Summary showing the rarity of the external endpoint that the Raspberry Pi device ‘called home’ to and the model alerts triggered.  
Figure 1: Darktrace’s External Sites Summary showing the rarity of the external endpoint that the Raspberry Pi device ‘called home’ to and the model alerts triggered.  

Darktrace’s Cyber AI Analyst launched an autonomous investigation into the activity, correlating related events into a broader incident and generating a report outlining the potential threat along with supporting technical details.

Darktrace’s anomaly-based detection meant that the Raspberry Pi device did not need to be observed performing clearly malicious behavior to alert the customer to the security risk, and neither can defenders afford to wait for such escalation.

Why is this significant?

In 2021 a similar attack took place. Aiming to poison a Florida water treatment facility, attackers leveraged a TeamViewer instance that had been dormant on the system for six months, effectively allowing the attacker to ‘live off the land’ [10].  

The Raspberry Pi device in this incident also remained outside the purview of the customer’s security team at first. It could have been leveraged by a persistent attacker to pivot within the internal network and communicate externally.

A proactive approach to active defense that seeks to minimize and continuously monitor the attack surface and network is crucial.  

The growing interest in manufacturing from attackers and policymakers

Significant motivations for targeting the manufacturing sector and increasing regulatory demands make the convergence of supply chain risk, insider risk, and the prevalence of stealthy living-off-the-land techniques particularly relevant to this sector.

Manufacturing is consistently targeted by cybercriminals [11], and the sector’s ‘just-in-time’ model grants attackers the opportunity for high levels of disruption. Furthermore, under NIS 2, manufacturing and some food and beverage processing entities are now designated as ‘important’ entities. This means stricter incident reporting requirements within 24 hours of detection, and enhanced security requirements such as the implementation of zero trust and network segmentation policies, as well as measures to improve supply chain resilience [12][13][14].

How can Darktrace help?

Ultimately, Darktrace successfully assisted a manufacturing organization in detecting a potentially disruptive 'near-miss' within their OT environment, even in the absence of traditional IoCs.  Through passive asset identification techniques and continuous network monitoring, the customer improved their understanding of their network and supply chain risk.  

While the swift detection of the rogue device allowed the threat to be identified before it could escalate, the customer could have reduced their time to respond by using Darktrace’s built-in response capabilities, had Darktrace’s Autonomous Response capability been enabled.  Darktrace’s Autonomous Response can be configured to target specific connections on a rogue device either automatically upon detection or following manual approval from the security team, to stop it communicating with other devices in the network while allowing other approved devices to continue operating. Furthermore, the exportable report generated by Cyber AI Analyst helps security teams to meet NIS 2’s enhanced reporting requirements.  

Sophisticated ICS attacks often leverage insider access to perform in-depth reconnaissance for the development of tailored malware capabilities.  This case study and high-profile ICS attacks highlight the importance of mitigating supply chain risk in a similar way to insider risk.  As ICS networks adapt to the introduction of IIoT, remote working and the increased convergence between IT and OT, it is important to ensure the approach to secure against these threats is compatible with the dynamic nature of the network.  

Credit to Nicole Wong (Principal Cyber Analyst), Matthew Redrup (Senior Analyst and ANZ Team Lead)

[related-resource]

Appendices

MITRE ATT&CK Mapping

  • Infrastructure / New Raspberry Pi Device - INITIAL ACCESS - T1200 Hardware Additions
  • Device / DNS Requests to Unusual Server - CREDENTIAL ACCESS, COLLECTION - T1557 Man-in-the-Middle
  • Compromise / Agent Beacon - COMMAND AND CONTROL - T1071.001 Web Protocols

References

[1] https://www.cisa.gov/topics/physical-security/insider-threat-mitigation/defining-insider-threats

[2] https://www.trendmicro.com/vinfo/gb/threat-encyclopedia/web-attack/139/havex-targets-industrial-control-systems

[3]https://thehackernews.com/2018/08/tsmc-wannacry-ransomware-attack.html

[4] https://www.theverge.com/2020/12/21/22194183/intel-nvidia-cisco-government-infected-solarwinds-hack

[5] https://www.centreon.com/monitoring-ot-with-raspberry-pi-and-centreon/

[6] https://ieeexplore.ieee.org/document/9107689

[7] https://www.linkedin.com/pulse/webicc-scada-integration-industrial-raspberry-pi-devices-mryff

[8] https://www.rowse.co.uk/blog/post/how-is-the-raspberry-pi-used-in-the-iiot

[9] https://sepiocyber.com/resources/whitepapers/raspberry-pi-a-friend-or-foe/#:~:text=Initially%20designed%20for%20ethical%20purposes,as%20cyberattacks%20and%20unauthorized%20access

[10] https://edition.cnn.com/2021/02/10/us/florida-water-poison-cyber/index.html

[11] https://www.mxdusa.org/2025/02/13/top-cyber-threats-in-manufacturing/

[12] https://www.shoosmiths.com/insights/articles/nis2-what-manufacturers-and-distributors-need-to-know-about-europes-new-cybersecurity-regime

[13] https://www.goodaccess.com/blog/nis2-require-zero-trust-essential-security-measure#zero-trust-nis2-compliance

[14] https://logisticsviewpoints.com/2024/11/06/the-impact-of-nis-2-regulations-on-manufacturing-supply-chains/

Continue reading
About the author
Nicole Wong
Cyber Security Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI