Blog
/
/
December 7, 2017

Darktrace: Investigating Widespread Trojan Infections

Discover how Darktrace expedites the investigation of widespread Trojan infections, enhancing cybersecurity and response times.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Dec 2017

This blog post outlines how Darktrace helps security operations centre (SOC) teams become more efficient by drastically cutting down the time needed to investigate incidents. This is illustrated by an example encountered in a recent Proof of Value where over 350 client devices had been infected by a stealthy banking trojan.

Identifying and investigating a compromise of this size would usually take a SOC team several hours if not days using disparate traditional security tools. Employing Darktrace, the most important questions were answered within 90 minutes. The main reason for this is that Darktrace provides full visibility and context into network activity for all devices monitored on a single, unified platform.

Alert fatigue & the cyber security skill gap

Getting cyber security right is difficult and time-consuming. Complexity is one of the main challenges the cyber security community is facing. These days, networks are only vaguely defined with digital supply chains, outsourcing, the push into the cloud and the advent of micro-virtualisation like Docker. The amount of data stored, devices connected to internal networks, connections made by devices and the heterogeneity in IT adds to this complexity. Managing it is difficult at best and securing it with traditional tools can be a daunting task.

Our industry is struggling with what has been labelled the ‘cyber security skill gap’. The demand for skilled, experienced security practitioners consistently outstrips supply. SOC teams struggle to find the right people for the job and to keep their analysts motivated in the face of a rapidly evolving threat landscape. Alert fatigue and burnout are common symptoms for SOC analysts working long hours and graveyard shifts.

Investigation methodology

Any incident responder will always begin by asking some high-level questions concerning the incident under investigation – regardless of it being an adware infection, a banking trojan, ransomware, an active intrusion or any other form of cyber security incident.

The most important questions usually are:

  • How did the infection occur? (To prevent the same initial infection vector in the future)
  • What behavior is the infected device exhibiting? (To understand the threat and the risk of the infection)
  • What Indicators of Compromise (IoC) are seen? (To update other security tools and to use for further investigation)
  • Are other devices infected as well? (To assess the extent of the infection)

We did a recent Proof of Value with an IT service provider in EMEA. Darktrace entered an environment which had already succumbed to a widespread compromise – over 350 client devices had been infected with banking trojans. Let’s walk through how we identified, triaged and investigated this infection using Darktrace.

Identifying the incident

Darktrace came into the environment after the initial infection had taken place already. Darktrace instantly identified several devices exhibiting unexpected HTTP beaconing to unusual, rare external IP addresses. The devices made HTTP POST requests without prior GET requests along other suspicious behavior. Darktrace created several high-severity alerts for this, e.g. ‘Compromise / Suspicious HTTP Beacons to Dotted Quad’ and ‘Compromise / Possible Malware HTTP Comms’:

Figure 1: Example Darktrace alert.

Triaging the incident

Darktrace then provides context around this alert - e.g. the external IP the beaconing was made to, the internal device including the associated user, and the suspicious behavior:

Figure 2: Detection context and C2 IP.

A quick investigation of the external IP reveals that it is a recently discovered command and control (C2) IP address for the Dridex banking trojan.

Drilling deeper into this, Darktrace provides PCAPs for every connection seen. A PCAP for the C2 connection above confirms this incident as active, successful, encoded beaconing to a malicious C2 IP:

Figure 3: PCAP and encoded HTTP POSTs.

Investigating the incident

At this stage, we want to further examine the behavior of the infected device around the time of the incident. Darktrace provides full visibility into past activity, including all network connection made by any device - regardless of whether the incident occurred on the device or not.

We attend to all external connections made by the infected device around the time of the incident and immediately identify more suspicious C2 communication:

Figure 4: More device behavior; further C2 IPs.

By now we have identified 6 different C2 IP addresses.

We can use Darktrace’s ‘External Sites Summary’ to view all devices that have connected to a specific IP or domain in the recent past. Doing this for the initial C2 IP yields the following result (excerpt):

Figure 5: External Sites Summary; further infections.

We immediately identify 5 additional devices that made successful connections to the C2 IP address. In fact, the list above is abridged as we actually saw over 350 devices connecting to this and other C2 IP addresses. Notably, all observed devices appear to have a similar naming structure - this will become important in the next part of the analysis.

At this point we have answered all but the first question: ‘How did the infection occur?’

Darktrace started monitoring the network after the initial infection occurred and spread. Further research into the C2 IP addresses shows that they are associated with the Emotet trojan. This sophisticated malware often precedes banking trojan (e.g. Dridex) infections and is spread via phishing. We can thus assume that phishing was a likely initial infection vector.

How then did the infection manage to spread to so many devices?

Surely not all users clicked on suspicious phishing emails? Recent versions of Emotet have limited lateral movement capabilities. They mainly propagate via SMB brute forcing - trying administrative accounts and hard-coded password lists. The naming convention on the infected devices is very similar - this could indicate a similar build-process and setup of the devices. If a vulnerability - such as an administrative account with a weak password - existed on one of the devices, it might be present in all of the devices with a similar build.

Using Darktrace, the security team has now a solid understanding of the nature and size of the infection, the IoCs available to update firewalls and other preventive security controls and outstanding remediation-activities.

What would this investigation look like with traditional tools, not using Darktrace?

Detecting these covert banking trojans in the first place, let alone triaging them fully, can be a difficult challenge in itself. Current banking Trojan strains such as Dridex, Fedeo or Vawtrak keep updating the malware with new C2 addresses to avoid blacklisting. Initial detection could be at any stage of the attack lifecycle – likely it will be in the latter stages though, when considerable damage has already been done.

An analyst will have to log into various security devices to get close to the same level of visibility provided in Darktrace – web proxy logs, anti-virus logs, running PCAPs on infected hosts, SIEM logs. Having to switch between all those disparate security tools is not time-efficient and produces a fragmentary picture of what actually transpired.

Conclusion

A working hypothesis is that a single device was initially infected via phishing, allowing Emotet to spread to over 350 internal devices via SMB brute forcing. It took no longer than 90 minutes to come from an initial detection of the incident to this conclusion, which forms the basis for an actionable report.

The last thing a SOC needs is yet another tool producing a profusion of alerts. Using Darktrace’s machine learning and unrivalled network visibility, you can focus on the small set of relevant alerts and rapidly investigate those incidents according to their severity and priority.

Darktrace can reduce costs even if you bring in a third-party incident response team. You will be able to significantly speed up their ongoing investigation if they have access to Darktrace. Third-party incident response teams are expensive – their daily rates ranging between £2,000 and £3,000 per day. Cutting their work down from days to hours will result in cost and efforts saved.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
David Ison
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI